某商品原價(jià)200元,若連續(xù)兩次漲價(jià)10%后出售,則新售價(jià)為( 。
A、222元B、240元
C、242元D、484元
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得新售價(jià)為200×(1+10%)2.即可得出.
解答: 解:由題意可得新售價(jià)=200×(1+10%)2=242.
故選:C.
點(diǎn)評(píng):本題考查了指數(shù)運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),任取4個(gè)點(diǎn)不共面的概率為( 。
A、
23
35
B、
47
70
C、
5
7
D、
139
210

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的韋恩圖中,陰影部分對(duì)應(yīng)的集合是(  )
A、A∩B
B、∁U(A∩B)
C、A∩(∁UB)
D、(∁UA)∩B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

形如y=
b
|x|-a
(a>0,b>0)
的函數(shù)因其函數(shù)圖象類似于漢字中的囧字,故生動(dòng)地稱為“囧函數(shù)”.則當(dāng)a=1,b=1時(shí)的“囧函數(shù)”與函數(shù)y=lg|x|的交點(diǎn)個(gè)數(shù)為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為等差數(shù)列,若a2+a3+a7=12,則S7=(  )
A、24B、28C、15D、54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 a2+b2+c2=1,求證:(a+b+c)2≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-ax(a>0),g(x)=bx2+2b-1.
(1)若曲線y=f(x)與y=g(x)在它們的交點(diǎn)(1,c)處有相同的切線,求實(shí)數(shù)a,b的值;
(2)當(dāng)a=1,b=0時(shí),求函數(shù)h(x)=f(x)+g(x)在區(qū)間[t,t+3](t≥-2)上的最小值;
(3)當(dāng)b=
1-a
2
時(shí),若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集為U=R,集合A={x|(x+3)(x-6)≥0},B={x|log2(x+2)<4}.  
(1)求集合A,集合B以及如圖陰影部分表示的集合;
(2)已知C={x|2a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果數(shù)列{an}同時(shí)滿足:(1)各項(xiàng)均為正數(shù),(2)存在常數(shù)k,對(duì)任意n∈N*,an+12=anan+2+k都成立,那么,這樣的數(shù)列{an}我們稱之為“類等比數(shù)列”.由此各項(xiàng)均為正數(shù)的等比數(shù)列必定是“類等比數(shù)列”.問(wèn):
(1)若數(shù)列{an}為“類等比數(shù)列”,且k=(a2-a12,求證:a1、a2、a3成等差數(shù)列;
(2)若數(shù)列{an}為“類等比數(shù)列”,且k=0,a2、a4、a5成等差數(shù)列,求
a2
a1
的值;
(3)若數(shù)列{an}為“類等比數(shù)列”,且a1=a,a2=b(a、b為常數(shù)),是否存在常數(shù)λ,使得an+an+2=λan+1對(duì)任意n∈N*都成立?若存在,求出λ;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案