【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(Ⅰ)證明:CD⊥AE;
(Ⅱ)證明:PD⊥平面ABE;
(Ⅲ)求二面角A﹣PD﹣C的正切值.

【答案】(Ⅰ)證明:在四棱錐P﹣ABCD中,PA⊥底面ABCD,CD平面ABCD,∴CD⊥PA.
又CD⊥AC,PA∩AC=A,∴CD⊥面PAC,
∵AE面PAC,故CD⊥AE.
(Ⅱ)證明:由PA=AB=BC,∠ABC=60°,可得PA=AC,
∵E是PC的中點,∴AE⊥PC,
由(1)知CD⊥AE,從而AE⊥面PCD,故AE⊥PD.
由(Ⅰ)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.
而PD平面PCD,∴AE⊥PD.
∵PA⊥底面ABCD,PD在底面ABCD內(nèi)的射影是AD,AB⊥AD,∴AB⊥PD.
又∵AB∩AE=A,∴PD⊥面ABE
(Ⅲ)解:過點A作AM⊥PD,垂足為M,連接EM,則(Ⅱ)知,AE⊥平面PCD,AM在平面PCD內(nèi)的射影是EM,則EM⊥PD,因此∠AME是二面角A﹣PD﹣C的一個平面角.
由已知,得∠CAD=30°.設(shè)AC=a,則PA=a,AD= ,PD= ,AE=
在直角△ADP中,∵AM⊥PD,∴AM×PD=PA×AD,∴AM=
在直角△AEM中,AE= ,AM= ,∴EM= a
∴tan∠AME= =
所以二面角A﹣PD﹣C的正切值為

【解析】(Ⅰ)由PA⊥底面ABCD,可得 CD⊥PA,又CD⊥AC,故CD⊥面PAC,從而證得CD⊥AE;(Ⅱ)由等腰三角形的底邊中線的性質(zhì)可得AE⊥PC,由(Ⅰ)知CD⊥AE,從而AE⊥面PCD,AE⊥PD,再由 AB⊥PD 可得 PD⊥面ABE;(Ⅲ)過點A作AM⊥PD,由(Ⅱ)知,AE⊥面PCD,故∠AME是二面角A﹣PD﹣C的一個平面角,用面積法求得AE和AM,從而可求 二面角A﹣PD﹣C的正切值.
【考點精析】本題主要考查了空間中直線與直線之間的位置關(guān)系和直線與平面垂直的判定的相關(guān)知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:x﹣my+3=0和圓C:x2+y2﹣6x+5=0
(1)當(dāng)直線l與圓C相切時,求實數(shù)m的值;
(2)當(dāng)直線l與圓C相交,且所得弦長為 時,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】證明下列不等式:
(1)設(shè)a,b,c∈R* , 且滿足條件a+b+c=1,證明: ≥9
(2)已知a≥0,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時,求處的切線方程;

(Ⅱ)求單調(diào)區(qū)間;

(Ⅲ)若圖象與軸關(guān)于, 兩點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞減的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4是等差中項,則公比q= , 通項公式為an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,其左頂點A在圓O:x2+y2=16上.

(1)求橢圓W的方程;
(2)若點P為橢圓W上不同于點A的點,直線AP與圓O的另一個交點為Q.是否存在點P,使得 ?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人在靜水中游泳,速度為4公里/小時,他在水流速度為4公里/小時的河中游泳.
(1)若他垂直游向河對岸,則他實際沿什么方向前進?實際前進的速度為多少?
(2)他必須朝哪個方向游,才能沿與水流垂直的方向前進?實際前進的速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當(dāng)點A的橫坐標(biāo)為3時,△ADF為正三角形.

(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(。┳C明直線AE過定點,并求出定點坐標(biāo);
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題共12分)已知函數(shù).

(1)求函數(shù)的極值點;

(2)若f(x)≥x2+1在(0,2)上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案