【題目】已知函數且是的導函數,則曲線C:y=x3過點P(a,b)的切線方程為
A. B.
C. D.
【答案】D
【解析】
根據f(x)的解析式求出f(x)的導函數,把x代入導函數即可求出a的值,然后設出切點(x0,y0)和切線方程,通過切線經過P點進而得到切點的坐標,根據切點坐標和求出的斜率寫出切線方程即可.
解:由f(x)=3x+cos2x+sin2x得到:f′(x)=3﹣2sin2x+2cos2x,
且由y=x3得到:y′=3x2,
則a=f′()=3﹣2sin2cos1,
由于P(a,b)為曲線y=x3上一點,則b=1,
設y=x3的上切點為(x0,y0),則切線的斜率k=3x02,
則切線方程為y﹣y0=3x02(x﹣x0),
又∵經過P(1,1)點,
∴1﹣y0=3x02(1﹣x0),
將y0=x03帶入得到1﹣x03=3x02(1﹣x0),即(1﹣x0)(1+x0+x02)=3x02(1﹣x0),
解得x0=1或x0.
當x0=1時,y0=1,則切線方程為y﹣1=3(x﹣1),即3x﹣y﹣2=0;
當x0時,y0,則切線方程為y3(x),即3x﹣4y+1=0
綜上可得,曲線上過P的切線方程為:3x﹣y﹣2=0或3x﹣4y+1=0.
故選:D.
科目:高中數學 來源: 題型:
【題目】某校從參加考試的學生中抽出60名學生,將其成績(均為整數)分成六組,…后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求成績落在上的頻率,并補全這個頻率分布直方圖;
(Ⅱ)估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ)為調查某項指標,從成績在60~80分,這兩分數段組的學生中按分層抽樣的方法抽取6人,再從這6人中選2人進行對比,求選出的這2名學生來自同一分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的個數有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地隨著經濟的發(fā)展,居民收入逐年增長,經統(tǒng)計知年份x和儲蓄
存款y (千億元)具有線性相關關系,下表是該地某銀行連續(xù)五年的儲蓄存款(年底余額),
如下表(1):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
表(1)
為了研究計算的方便,工作人員將上表的數據進行了處理,令
得到下表(2):
時間代號t | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
表(2)
(1)由最小二乘法求關于t的線性回歸方程;
(2)通過(1)中的方程,求出y關于x的線性回歸方程;
(3)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于一組數據(u1,v1),(u2,v2),…,(un,vn),其回歸直線的斜率和截距的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現擬在兩條木棧道的A,B處設置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大;
(3)設棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com