經(jīng)過點且與直線相切的動圓的圓心軌跡為.點在軌跡上,且關(guān)于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設(shè)直線與軌跡交于點、
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線的距離等于,且△的面積為20,求直線的方程.

(1);(2)詳見解析;(3).

解析試題分析:(1)方法1是利用直接法,設(shè)動點坐標為,根據(jù)題中條件列式并化簡進而求出動點的軌跡方程;方法2是將問題轉(zhuǎn)化為圓心到定點的距離等于點到定直線的距離,利用拋物線的定義寫出軌跡的方程;(2)由于軸,利用直線與直線的斜率互為相反數(shù)證明;(3)方法1是先將的方程與拋物線的方程聯(lián)立求出點的坐標,并根據(jù)一些幾何性質(zhì)求出,并將的面積用點的坐標表示以便于求出點的坐標,結(jié)合點的坐標求出直線的方程;方法2是利用(2)中的條件與結(jié)論,利用直線確定點和點坐標之間的關(guān)系,借助弦長公式求出、,并將的面積用點的坐標表示以便于求出點的坐標,結(jié)合點的坐標求出直線的方程.
試題解析:(1)方法1:設(shè)動圓圓心為,依題意得,.        1分
整理,得.所以軌跡的方程為.                   2分
方法2:設(shè)動圓圓心為,依題意得點到定點的距離和點到定直線的距離相等,
根據(jù)拋物線的定義可知,動點的軌跡是拋物線.                    1分
且其中定點為焦點,定直線為準線.

所以動圓圓心的軌跡的方程為.    2分
(2)由(1)得,即,則
設(shè)點,由導數(shù)的幾何意義知,直線的斜率為
.          3分
由題意知點.設(shè)點,
,
.                  4分
因為.           5分
由于,即.         6分
所以.                               7分
(3)方法1:由點的距離等于,可知

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,右準線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標準方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,曲線上任意一點分別與點、連線的斜率的乘積為
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線軸、軸分別交于兩點,若曲線與直線沒有公共點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-的距離為,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標為4,
(Ⅰ)求拋物線的方程;
(Ⅱ) 設(shè)點是拋物線上的兩點,的角平分線與軸垂直,求的面積最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓 ,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,且其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準圓”方程;
(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線,使得與橢圓都只有一個交點,試判斷是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B、C是橢圓W:上的三個點,O是坐標原點.
(I)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(II)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義:設(shè)分別為曲線上的點,把兩點距離的最小值稱為曲線的距離.
(1)求曲線到直線的距離;
(2)已知曲線到直線的距離為,求實數(shù)的值;
(3)求圓到曲線的距離.

查看答案和解析>>

同步練習冊答案