【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計(jì)算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺(tái)采訪,請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
【答案】(1)b=30,c=50(2)有99%的把握,(3)
【解析】試題分析:(1)由分層抽樣的概念得到參數(shù)值;(2)根據(jù)公式計(jì)算得到,再下結(jié)論;(3)根據(jù)古典概型的計(jì)算公式,列出事件的所有可能性,再得到4男一女的事件數(shù)目,做商即可.
解析:
(1)根據(jù)分層抽樣方法抽得女生50人,男生75人,所以b=50-20=30(人),
c=75-25=50(人)
(2)因?yàn)?/span>,所以有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān).
(3)設(shè)5名男生分別為A、B、C、D、E,2名女生分別為a、b,由題意可知從7人中選出5人接受電視臺(tái)采訪,相當(dāng)于從7人中挑選2人不接受采訪,其中一男一女,所有可能的結(jié)果有{A,B}{A,C}{A,D}{A,E}{A,a}{A,b}{B,C}{B,D}{B,E}{B,a}{B,b}{C,D}{C,E}{C,a}{C,b}{D,E}{D,a}
{D,b}{E,a}{E,b}{a,b},共21種, 其中恰為一男一女的包括,{A,a}{A,b}{B,a}{B,b}{C,a}{C,b}{D,a}{D,b}{E,a}{E,b},共10種.
因此所求概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求 + .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,依逆時(shí)針次序排列,點(diǎn)的極坐標(biāo)為.
(1)求點(diǎn),,的直角坐標(biāo);
(2)設(shè)為上任意一點(diǎn),求點(diǎn)到直線距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接夏季旅游旺季的到來,少林寺單獨(dú)設(shè)置了一個(gè)專門安排游客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準(zhǔn)備的一些食物有些月份剩余不少,浪費(fèi)很嚴(yán)重,為了控制經(jīng)營成本,減少浪費(fèi),就想適時(shí)調(diào)整投入.為此他們統(tǒng)計(jì)每個(gè)月入住的游客人數(shù),發(fā)現(xiàn)每年各個(gè)月份來客棧入住的游客人數(shù)會(huì)發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試用一個(gè)正弦型三角函數(shù)描述一年中入住客棧的游客人數(shù)y與月x份之間的關(guān)系;
(2)請(qǐng)問哪幾個(gè)月份要準(zhǔn)備400份以上的食物?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過300):
空氣質(zhì)量指數(shù) | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
空氣質(zhì)量等級(jí) | 1級(jí)優(yōu) | 2級(jí)良 | 3級(jí)輕度污染 | 4級(jí)中度污染 | 5級(jí)重度污染 | 6級(jí)嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請(qǐng)估算2017年(以365天計(jì)算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計(jì)算);
(Ⅱ)該校2017年6月7、8、9日將作為高考考場,若這三天中某天出現(xiàn)5級(jí)重度污染,需要凈化空氣費(fèi)用10000元,出現(xiàn)6級(jí)嚴(yán)重污染,需要凈化空氣費(fèi)用20000元,記這三天凈化空氣總費(fèi)用為X元,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , A為橢圓E的右頂點(diǎn),B,C分別為橢圓E的上、下頂點(diǎn).線段CF2的延長線與線段AB交于點(diǎn)M,與橢圓E交于點(diǎn)P.
(1)若橢圓的離心率為 ,△PF1C的面積為12,求橢圓E的方程;
(2)設(shè)S =λS ,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
已知圓和圓.
(1)若直線過點(diǎn),且被圓截得的弦長為,
求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:
存在過點(diǎn)P的無窮多對(duì)互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對(duì)任意的,滿足,其中,為常數(shù).
(1)若的圖象在處的切線經(jīng)過點(diǎn),求的值;
(2)已知,求證;
(3)當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知x0= 是函數(shù)f(x)=sin(2x+φ)的一個(gè)極大值點(diǎn),則f(x)的一個(gè)單調(diào)遞減區(qū)間是( )
A.( , )
B.( , )
C.( ,π)
D.( ,π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com