【題目】如圖,在極坐標(biāo)系中,,,,,弧,所在圓的圓心分別是,,曲線是弧,曲線是線段,曲線是線段,曲線是弧.

(1)分別寫出,,的極坐標(biāo)方程;

(2)曲線,,構(gòu)成,若點(diǎn),(),在上,則當(dāng)時(shí),求點(diǎn)的極坐標(biāo).

【答案】(1)線的極坐標(biāo)方程為:,的極坐標(biāo)方程為:,,的極坐標(biāo)方程分別為:,;(2),

.

【解析】

(1)在極坐標(biāo)系下,在曲線上任取一點(diǎn),直角三角形中,

,曲線的極坐標(biāo)方程為:,同理可得其他.

(2)當(dāng)時(shí),,當(dāng),

計(jì)算得到答案.

(1)解法一:在極坐標(biāo)系下,在曲線上任取一點(diǎn),連接,

則在直角三角形中,,,得:.

所以曲線的極坐標(biāo)方程為:

又在曲線上任取一點(diǎn),則在中,,,

,,由正弦定理得:,

即:,化簡(jiǎn)得的極坐標(biāo)方程為:

同理可得曲線,的極坐標(biāo)方程分別為:

解法二:(先寫出直角坐標(biāo)方程,再化成極坐標(biāo)方程.)

由題意可知,的直角坐標(biāo)方程為:

,,

,,

所以,,的極坐標(biāo)方程為:

,,

(2)當(dāng)時(shí),,

當(dāng)時(shí),,

所以點(diǎn)的極坐標(biāo)為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):

年份

2006

2008

2010

2012

2014

需求量/萬(wàn)噸

236

246

257

276

286

1)利用所給數(shù)據(jù)求年需求量與年份之間的線性回歸方程;

2)利用(1)中所求出的線性回歸方程預(yù)測(cè)該地2018年的糧食需求量.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著工業(yè)化以及城市車輛的增加,城市的空氣污染越來(lái)越嚴(yán)重,空氣質(zhì)量指數(shù)一直居高不下,對(duì)人體的呼吸系統(tǒng)造成了嚴(yán)重的影響.現(xiàn)調(diào)查了某市名居民的工作場(chǎng)所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

室外工作

室內(nèi)工作

合計(jì)

有呼吸系統(tǒng)疾病

無(wú)呼吸系統(tǒng)疾病

合計(jì)

(Ⅰ)補(bǔ)全列聯(lián)表;

(Ⅱ)你是否有的把握認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān);

(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.

臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓的右焦點(diǎn)且斜率存在的直線交橢圓兩點(diǎn),線段的垂直平分線交軸于點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,軸,直線軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問(wèn)四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蛇養(yǎng)殖基地因國(guó)家實(shí)施精準(zhǔn)扶貧,大力扶持農(nóng)業(yè)產(chǎn)業(yè)發(fā)展,擬擴(kuò)大養(yǎng)殖規(guī)模.現(xiàn)對(duì)該養(yǎng)殖基地已經(jīng)售出的王錦蛇的體長(zhǎng)(單位:厘米)進(jìn)行了統(tǒng)計(jì),得到體長(zhǎng)的頻數(shù)分布表如下:

體長(zhǎng)(厘米)

頻數(shù)

40

50

110

160

120

20

(1)將王錦蛇的體長(zhǎng)在各組的頻率視為概率,趙先生欲從此基地隨機(jī)購(gòu)買3條王錦蛇,求至少有2條體長(zhǎng)不少于200厘米的概率.

(2)為了拓展銷售市場(chǎng),該養(yǎng)殖基地決定購(gòu)買王錦蛇與烏梢蛇兩類成年母蛇用于繁殖幼蛇,這兩類蛇各200條的相關(guān)信息如下表.

繁殖年限(年)

3

4

5

6

王錦蛇(條)

20

60

80

40

烏梢蛇(條)

30

80

70

20

若王錦蛇、烏梢蛇成年母蛇的購(gòu)買成本分別為650元/條、600元/條,每條母蛇平均可為養(yǎng)殖場(chǎng)獲得1200元/年的銷售額,且每條蛇的繁殖年限均為整數(shù),將每條蛇的繁殖年限的頻率看作概率,以每條蛇所獲得的毛利潤(rùn)(毛利潤(rùn)=總銷售額-購(gòu)買成本)的期望值作為購(gòu)買蛇類的依據(jù),試問(wèn):應(yīng)購(gòu)買哪類蛇?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)時(shí),不等式成立,則實(shí)數(shù)k的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

()當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

()當(dāng)時(shí),若在區(qū)間上的最小值為-2,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若x軸為曲線的切線,求a的值;

(Ⅱ)求函數(shù)上的最大值和最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案