設(shè)函數(shù)(a為實(shí)數(shù)).⑴若a<0,用函數(shù)單調(diào)性定義證明:上是增函數(shù);⑵若a=0,的圖象與的圖象關(guān)于直線(xiàn)yx對(duì)稱(chēng),求函數(shù)的解析式.

解: (1)設(shè)任意實(shí)數(shù)x1<x2,則f(x1)- f(x2)=

  

        又,∴f(x1)- f(x2)<0,所以f(x)是增函數(shù).   

     (2)當(dāng)a=0時(shí),y=f(x)=2x-1,∴2x=y(tǒng)+1, ∴x=log2(y+1),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),記函數(shù)f(x)=a
1-x2
+
1+x
+
1-x
的最大值為g(a).
(1)設(shè)t=
1+x
+
1-x
,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分8分.老教材試題第1小題4分,第2小題4分;新教材試題第1小題3分,第2小題5分.)
(老教材)
設(shè)a為實(shí)數(shù),方程2x2-8x+a+1=0的一個(gè)虛根的模是
5

(1)求a的值;
(2)在復(fù)數(shù)范圍內(nèi)求方程的解.
(新教材)
設(shè)函數(shù)f(x)=2x+p,(p為常數(shù)且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在滿(mǎn)足(1)的條件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三數(shù)學(xué)10月單元練習(xí)(函數(shù)三) 題型:解答題

(本小題滿(mǎn)分12分)設(shè)函數(shù)(a為實(shí)數(shù)).

(1)若a<0,用函數(shù)單調(diào)性定義證明:上是增函數(shù);

(2)若a=0,的圖象與的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求函數(shù)的解析式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三10月月考理科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)(a為實(shí)數(shù)).⑴若a<0,用函數(shù)單調(diào)性定義證明:上是增函數(shù);⑵若a=0,的圖象與的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求函數(shù)的解析式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案