【題目】已知函數(shù)的最小正周期為,其圖象關(guān)于直線對稱.給出下面四個結(jié)論:①將的圖象向右平移個單位長度后得到函數(shù)圖象關(guān)于原點對稱;②點圖象的一個對稱中心;③;④在區(qū)間上單調(diào)遞增.其中正確的結(jié)論為(

A.①②B.②③C.②④D.①④

【答案】C

【解析】

先由函數(shù)周期性與對稱軸,求出函數(shù)解析式為,根據(jù)三角函數(shù)的平移原則,正弦函數(shù)的對稱性與單調(diào)性,逐項判斷,即可得出結(jié)果.

因為函數(shù)的最小正周期為,其圖象關(guān)于直線對稱,

所以,解得

因為,所以,因此

①將的圖象向右平移個單位長度后函數(shù)解析式為,

,所以其對稱中心為:,故①錯;

②由,解得,即函數(shù)的對稱中心為;令,則,故②正確;

,故③錯;

④由,

即函數(shù)的增區(qū)間為,因此在區(qū)間上單調(diào)遞增.即④正確.

故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù),上單調(diào)遞增,求實數(shù)的取值范圍;

2)若函數(shù)處的切線平行于軸,是否存在整數(shù),使不等式時恒成立?若存在,求出的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,AB=2,∠BAD=60°,MPD的中點.

(Ⅰ)求證:OM∥平面PAB

(Ⅱ)平面PBD⊥平面PAC;

(Ⅲ)當三棱錐CPBD的體積等于 時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸為極軸建立極坐標系,曲線的極坐標方程為為常數(shù),且),直線與曲線交于兩點.

1)若,求實數(shù)的值;

2)若點的直角坐標為,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,平面,底面是邊長為的正方形,交于點,交于點,且.

(Ⅰ)證明:平面

(Ⅱ)求的長度;

(Ⅲ)求直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)節(jié)高三學(xué)生學(xué)習壓力,某校高三年級舉行了拔河比賽,在賽前三位老師對前三名進行了預(yù)測,于是有了以下對話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺得14班比15班強,14班名次會比15班靠前”.老師丙:“我覺得7班能贏15班”.最后老師丁去觀看完了比賽,回來后說:“確實是這三個班得了前三名,且無并列,但是你們?nèi)酥兄挥幸蝗祟A(yù)測準確”.那么,獲得一、二、三名的班級依次為( )

A.7班、14班、15B.14班、7班、15

C.14班、15班、7D.15班、14班、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直于所在的平面,的直徑,是弧上的一個動點(不與端點重合),上一點,且是線段上的一個動點(不與端點重合).

(1)求證:平面

(2)若是弧的中點,是銳角,且三棱錐的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的直角坐標方程及直線的普通方程;

2)設(shè)直線與曲線交于,兩點(點在點左邊)與直線交于點.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐的底面邊長為,、分別為的中點.

1)當時,證明:平面平面

2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案