(理)設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立”,那么,下列命題總成立的是

A.若f(3)≥9成立,則當(dāng)k≥1時(shí),均有f(k)≥k2成立

B.若f(5)≥25成立,則當(dāng)k≤5時(shí),均有f(k)≥k2成立

C.若f(7)<49成立,則當(dāng)k≥8時(shí),均有f(k)<k2成立

D.若f(4)=25成立,則當(dāng)k≥4時(shí),均有f(k)≥k2成立

答案:(理)D  由題設(shè)f(x)滿足:“當(dāng)f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立”,因此,對(duì)于A不一定有k=1,2時(shí)成立.對(duì)于B、C顯然錯(cuò)誤.對(duì)于D,∵f(4)=25>42,因此對(duì)于任意的k≥4,有f(k)≥k2成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問(wèn)是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市嘉定區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

(理)已知函數(shù),P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè),其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問(wèn)是否存在角a,使不等式對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案