【題目】已知圓的標(biāo)準(zhǔn)方程為,為圓上的動(dòng)點(diǎn),直線的方程為,動(dòng)點(diǎn)在直線上.
(1)求的最小值,并求此時(shí)點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過作直線與圓交于,兩點(diǎn),當(dāng)時(shí),求直線的方程.
【答案】(1)的最小值為,此時(shí)點(diǎn);(2)或.
【解析】
(1)轉(zhuǎn)化為圓心到直線的距離,求出距離減去半徑可得;(2)利用圓的弦長(zhǎng)結(jié)合勾股定理可求.
解:(1)依題意知:的最小值為圓心到直線的距離減去圓的半徑,且點(diǎn),
故,∴的最小值為.
又過圓心且與直線垂直的直線方程為:,
聯(lián)立解得,,
綜上可知,的最小值為,此時(shí)點(diǎn);
(2)把點(diǎn)代入直線的方程可得,即,
由,半徑得圓心到直線的距離,
當(dāng)直線斜率不存在時(shí),直線的方程為:,符合題意,
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:,即,
∴,解得,故直線的方程為:.
綜上可知,直線的方程為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為6,且橢圓與圓: 的公共弦長(zhǎng)為.
(1)求橢圓的方程.
(2)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn), ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大家知道,莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如下:
閱讀過莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計(jì)該校學(xué)生閱讀莫言作品超過50篇的概率;
(Ⅱ)對(duì)莫言作品閱讀超過75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān)?
非常了解 | 一般了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|,當(dāng)a<b<c時(shí),f(a)>f(c)>f(b),那么正確的結(jié)論是( 。
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長(zhǎng)為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請(qǐng)求出取最大值時(shí)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)六個(gè)從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?
(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?
(3)某次聯(lián)歡會(huì)要安排3個(gè)歌舞類節(jié)目、2個(gè)小品類節(jié)目和1個(gè)相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-sin2x+mcosx-1,x∈[].
(1)若f(x)的最小值為-4,求m的值;
(2)當(dāng)m=2時(shí),若對(duì)任意x1,x2∈[-]都有|f(x1)-f(x2)|恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com