(1)若道路網(wǎng)的總長度不超過5.5 km,試求中心道的取值范圍;
(2)問中心道長為何值時,道路網(wǎng)的總長度最短?
解:設(shè)中心道長度為2x.
(1)由題意得2x+4 解得 ∴中心道長的取值范圍是[ (2)∵y=2x+4 (y-2x)2=16(2-2x+x2) ∴12x2+(4y-32)x+32-y2=0 ① ∵x∈R, ∴Δ=(4y-32)2-4×12(32-y2)≥0 由于y>0, ∴y≥2+2 將ymin=2+2 12x2+(8+8 答:當(dāng)?shù)缆肪W(wǎng)長度不超過5.5 km時,中心道長的取值范圍是[ 中心道長為(2- |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009安徽卷理)(本小題滿分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到過疫區(qū).B肯定是受A感染的.對于C,因為難以斷定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是.同樣也假定D受A、B和C感染的概率都是
.在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機變量.寫出X的分布列(不要求寫出計算過程),并求X的均值(即數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到過疫區(qū)。B肯定是受A感染的。對于C,因為難以斷定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是。同樣也假定D受A、B和C感染的概率都是
。在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機變量。寫出X的分布列(不要求寫出計算過程),并求X的均值(即數(shù)學(xué)期望)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)(安徽卷) 題型:解答題
(本小題滿分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到過疫區(qū)。B肯定是受A感染的。對于C,因為難以斷定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是。同樣也假定D受A、B和C感染的概率都是
。在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機變量。寫出X的分布列(不要求寫出計算過程),并求X的均值(即數(shù)學(xué)期望)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com