若隨機(jī)變量ξ的分布列為:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,則D(ξ)的最小值等于   .
0
依題意有a=1-=,所以E(ξ)=m+n=2,即m+2n=6.又D(ξ)=(m-2)2+(n-2)2=2n2-8n+8=2(n-2)2,所以當(dāng)n=2時,D(ξ)取最小值為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

個同樣型號的產(chǎn)品中,有個是正品,個是次品,從中任取個,求(1)其中所含次品數(shù)的期望、方差;(2)事件“含有次品”的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三人參加某次招聘會,假設(shè)甲能被聘用的概率是,甲、丙兩人同時不能被聘用的概率是,乙、丙兩人同時能被聘用的概率為,且三人各自能否被聘用相互獨(dú)立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對值,求的分布列與均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)校為了使運(yùn)動員順利參加運(yùn)動會,招募了8名男志愿者和12名女志愿者,這20名志愿者的身高如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”,且只有“女高個子”才能擔(dān)任“禮儀小姐”.

 

 
 
8
16
5
8
9
 
 
8
7
6
17
2
3
5
5
6
7
4
2
18
0
1
2
 
 
 
 
1
19
0
 
 
 
 
(Ⅰ)用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,如果從這5人中隨機(jī)選2人,那么至少有1人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中隨機(jī)選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:
方案1:運(yùn)走設(shè)備,此時需花費(fèi)4000元;
方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56000元;
方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達(dá)60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費(fèi)X(隨機(jī)變量)的分布列;
(2)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為貫徹“激情工作,快樂生活”的理念,某單位在工作之余舉行趣味知識有獎競賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進(jìn)入決賽,答錯3題者則被淘汰.已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個數(shù)為X,試寫出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面內(nèi),不等式確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010828652321.png" style="vertical-align:middle;" />,不等式組確定的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010828683321.png" style="vertical-align:middle;" />.
(1)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”. 在區(qū)域中任取3個“整點(diǎn)”,求這些“整點(diǎn)”中恰好有2個“整點(diǎn)”落在區(qū)域中的概率;
(2)在區(qū)域中每次任取一個點(diǎn),連續(xù)取3次,得到3個點(diǎn),記這3個點(diǎn)落在區(qū)域中的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,旋轉(zhuǎn)一次的圓盤,指針落在圓盤中3分處的概率為,落在圓盤中2分處的概率為,落在圓盤中0分處的概率為,(),已知旋轉(zhuǎn)一次圓盤得分的數(shù)學(xué)期望為1分,則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某個不透明的袋中裝有除顏色外其它特征完全相同的8個乒乓球(其中3個是白色球,5個是黃色球),小李同學(xué)從袋中一個一個地摸乒乓球(每次摸出球后不放回),當(dāng)摸到的球是黃球時停止摸球.用隨機(jī)變量表示小李同學(xué)首先摸到黃色乒乓球時的摸球次數(shù),則隨機(jī)變量的數(shù)學(xué)期望值   

查看答案和解析>>

同步練習(xí)冊答案