【題目】已知在直角梯形中, , ,將沿折起至,使二面角為直角.

(1)求證:平面平面;

(2)若點滿足, ,當(dāng)二面角為45°時,求的值.

【答案】(1)見解析;(2).

【解析】試題分析:(1要證平面平面,轉(zhuǎn)證平面即可;2建立空間直角坐標(biāo)系計算平面的法向量,利用二面角為45°建立等量關(guān)系求出的值.

試題解析:

(1)梯形中,

.

又∵,

,∴.

.

折起后,∵二面角為直角,

∴平面平面.

又平面平面,

平面.

平面,

.

又∵,

平面.

又∵平面,∴平面平面.

(2)由(1)知, 平面,∴以為原點, 方向分別為軸、軸、軸正方向,建立如圖所示的空間直角坐標(biāo)系.

,

設(shè),由,

,得.

取線段的中點,連結(jié)

,

,∴.

又∵,

平面.

∴平面的一個法向量為.

設(shè)平面的一個法向量為,

,則.

,

.

,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下五個關(guān)于圓錐曲線的命題中:

①平面內(nèi)與定點A(-3,0)和B(3,0)的距離之差等于4的點的軌跡為;

②點P是拋物線上的動點,點Py軸上的射影是MA的坐標(biāo)是A(3,6),則的最小值是6;

③平面內(nèi)到兩定點距離之比等于常數(shù)的點的軌跡是圓;

④若過點C(1,1)的直線交橢圓于不同的兩點AB,且CAB的中點,則直線的方程是

⑤已知P為拋物線上一個動點,Q為圓上一個動點,那么點P到點Q的距離與點P到拋物線的準(zhǔn)線距離之和的最小值是

其中真命題的序號是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)參加語、數(shù)、外三門課程的考試,設(shè)該同學(xué)語、數(shù)、外取得優(yōu)秀成績的概率分別為 , ),設(shè)該同學(xué)三門課程都取得優(yōu)秀成績的概率為,都未取得優(yōu)秀成績的概率為,且不同課程是否取得優(yōu)秀成績相互獨立.

(1)求, ;

(2)設(shè)為該同學(xué)取得優(yōu)秀成績的課程門數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,拋物線的焦點為,射線與拋物線相交于點,與其準(zhǔn)線相交于點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)在平面直角坐標(biāo)系中,將曲線的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線,過點作直線,交曲線兩點,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù);

(1)若,求證: 上單調(diào)遞增;

(2)若,試討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關(guān)注“旅游文化周”居民的年齡段分布,隨機抽取了名年齡在且關(guān)注“旅游文化周”的居民進(jìn)行調(diào)查,所得結(jié)果統(tǒng)計為如圖所示的頻率分布直方圖.

年齡

單人促銷價格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價位如表所示.已知該旅行社的運營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團(tuán)旅客的年齡頻率分布,試通過計算確定該旅行社的這一活動是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進(jìn)行旅游知識推廣,并在知識推廣后再抽取人進(jìn)行反饋,求進(jìn)行反饋的居民中至少有人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點在傾斜角為的直線上,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.

(1)寫出的參數(shù)方程及的直角坐標(biāo)方程;

(2)設(shè)相交于兩點,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案