如圖,E是圓O內(nèi)兩弦AB和CD的交點(diǎn),過AD延長(zhǎng)線上一點(diǎn)F作圓O的切線FG,G為切點(diǎn),已知EF=FG.
求證:(1);(2)EF//CB.
(1)證明過程詳見解析(2)證明過程詳見解析
解析試題分析:本題考查切割線定理、三角形相似、同弧所對(duì)的圓周角相等、同位角相等等基礎(chǔ)知識(shí),考查學(xué)生的邏輯推理能力、轉(zhuǎn)化能力.第一問,利用切割線定理得到FG2=FA·FD,利用已知的等量關(guān)系代換式子中的FG,即得到△FED與△EAF中邊的比例關(guān)系,再由于2個(gè)三角形有一個(gè)公共角,所以得到2個(gè)三角形相似;第二問,由第一問的相似得∠FED=∠FAE,利用同弧所對(duì)的圓周角相等得∠FAE=∠DAB=∠DCB,即∠FED=∠BCD,利用同位角相等得EF∥CB.
試題解析:(1)由切割線定理得FG2=FA·FD.
又EF=FG,所以EF2=FA·FD,即.
因?yàn)椤?i>EFA=∠DFE,所以△FED∽△EAF. 6分
(2)由(1)得∠FED=∠FAE.
因?yàn)椤?i>FAE=∠DAB=∠DCB,
所以∠FED=∠BCD,所以EF∥CB. 10分
考點(diǎn):切割線定理、三角形相似、同弧所對(duì)的圓周角相等、同位角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知A、B、C三點(diǎn)的坐標(biāo)分別為(0,1)、(-1,0)、(1,0),P是線段AC上一點(diǎn),BP交AO于點(diǎn)D,設(shè)三角形ADP的面積為S,點(diǎn)P的坐標(biāo)為(x,y),求S關(guān)于x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC內(nèi)接于圓O,D為弦BC上一點(diǎn),過D作直線DP // AC,交AB于點(diǎn)E,交圓O在A點(diǎn)處的切線于點(diǎn)P.求證:△PAE∽△BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知AB是圓O的直徑,C為圓O上一點(diǎn),CD⊥AB于點(diǎn)D,弦BE與CD、AC分別交于點(diǎn)M、N,且MN=MC
(1)求證:MN=MB;
(2)求證:OC⊥MN。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(拓展深化)如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F(xiàn)在AC上,且AE=AF.
(1)證明:B、D、H、E四點(diǎn)共圓;
(2)證明:CE平分∠DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三角形ABC外接圓的半徑為1,點(diǎn)M、N分別是邊AB、AC的中點(diǎn),延長(zhǎng)MN與△ABC的外接圓交于點(diǎn)P,求線段NP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com