雙曲線與橢圓的離心率互為倒數(shù),則( 。
A.B.C.D.
B.

試題分析:由雙曲線與橢圓的離心率的定義知,雙曲線的離心率和橢圓的離心率分別為,然后由題意得,即,將其兩邊平方化簡即可得出結(jié)論.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓G:經(jīng)過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知m∈R,則動圓x2+y2+4mx-2my+6m2-4=0的圓心的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線y=kx+1(k∈R)與焦點在x軸上的橢圓恒有公共點,則t的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從橢圓=1(a>b>0)上一點P向x軸作垂線,垂足恰為左焦點F1,A是橢圓與x軸正半軸的交點,B是橢圓與y軸正半軸的交點,且AB∥OP(O是坐標原點),則該橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的對稱中心在坐標原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點M,N滿足,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點M(-2,0)的直線l與橢圓x2+2y2=2交于P1,P2,線段P1P2的中點為P.設(shè)直線l的斜率為k1(k1≠0),直線OP(O為坐標原點)的斜率為k2,則k1k2等于(  )
A.-2B.2C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓.
(1)求橢圓的離心率;
(2)設(shè)為原點,若點在橢圓上,點在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點,經(jīng)點F2的的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步練習冊答案