已知四面體ABCD(圖1),沿AB、AC、AD剪開,展成的平面圖形正好是圖2所示的直角梯形A1A2A3D(梯形的頂點(diǎn)A1、A2、A3重合于四面體的頂點(diǎn)A)。

   (I)證明:AB⊥CD;

   (II)當(dāng)A1D=10,A1A2=8時(shí),求四面體ABCD的體積。

(I)證明:由圖2,A1A2A3D為直角梯形,

    得A1B⊥A1D,A2B⊥A2C。                                                               

    即圖1中,AB⊥AC,AB⊥AD。                                                       

    又AC∩AD=A,∴AB⊥面ACD。

∵CD面ACD,∴AB⊥CD。                                                          

   (II)解:在圖2中,作DE⊥A2A3于E,

∵A1A2=8,∴DE=8,

又∵A1D=A3D=10,

∴EA3=6

∴A2A3=10+6=16。

而A2C=A3C,∴A2C=8,即圖1中AC=8,AD=10。

由A1A2=8,A1B=A2B,得圖1中AB=4。                                           

                                                      

由(I)知,AB⊥面ACD,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體ABCD(圖1),沿AB、AC、AD剪開,展成的平面圖形正好是圖2所示的直角梯形A1A2A3D(梯形的頂點(diǎn)A1、A2、A3重合于四面體的頂點(diǎn)A).
(1)證明:AB⊥CD.
(2)當(dāng)A1D=10,A1A2=8時(shí),求四面體ABCD的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、在已知四面體ABCD中,E、F分別是BC、AD中點(diǎn),EF=5,AB=8,CD=6,則AB與CD所成的角的大小
90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四面體ABCD中,DA=DB=DC=3
2
,且DA,DB,DC兩兩互相垂直,點(diǎn)O是△ABC的中心,將△DAO繞直線DO旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線DA與直線BC所成角的余弦值的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體ABCD中,BD=
3
,BC=DC=1,其余棱長均為2,且四面體ABCD的頂點(diǎn)A、B、C、D都在同一個(gè)球面上,則這個(gè)球的表面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體ABCD中,AB=AD=6,AC=4,CD=2
13
,AB⊥平面ACD,則四面體ABCD外接球的表面積為( 。
A、36πB、88π
C、92πD、128π

查看答案和解析>>

同步練習(xí)冊(cè)答案