已知數(shù)列{an},{bn}滿足a1=2,a2=4,bn=an+1-an,bn+1=2bn+2.
(1)求證:數(shù)列{bn+2}是公比為2的等比數(shù)列;。2)求an

解:(1)由,
∴{bn+2}是公比為2的等比數(shù)列.
(2)由(1)可知bn+2=4•2n-1=2n+1.∴bn=2n+1-2.則an+1-an=2n+1-2
令n=1,2,…n-1,則a2-a1=22-2,a3-a2=23-2,…an-an-1=2n-2,
各式相加得an=(2+22+23+…+2n)-2(n-1)=2n+1-2-2n+2=2n+1-2n.
所以an=2n+1-2n.
分析:(1)利用bn+1=2bn+2.構(gòu)造數(shù)列{bn+2},通過等比數(shù)列的定義,證明數(shù)列是等比數(shù)列.
(2)利用(1)求出數(shù)列bn=2n+1-2.通過bn=an+1-an,推出數(shù)列an的遞推關系式,利用累加法求出數(shù)列的通項公式即可.
點評:本題是中檔題,考查數(shù)列的證明,數(shù)列的遞推關系式的應用,通項公式的求法,考查計算能力,邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1<0,
an+1
an
=
1
2
,則數(shù)列{an}是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,試證明數(shù)列{bn}為等比數(shù)列;
(II)求數(shù)列{an}的通項公式an與前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)已知數(shù)列{an}中,an=-4n+5,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+3n+1,則數(shù)列{an}的通項公式為
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n,那么它的通項公式為an=
2n
2n

查看答案和解析>>

同步練習冊答案