【題目】(1)求經過兩直線2x-3y-3=0和xy+2=0的交點且與直線3xy-1=0平行的直線l的方程;

(2)求經過兩直線l1x-2y+4=0和l2xy-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程.

【答案】(1) 15x5y160(2) 4x3y60.

【解析】試題分析:(1)聯(lián)立兩條直線方程求出交點坐標,又因為直線l與直線3xy-1=0平行,所以直線l的斜率為-3,根據(jù)點斜式方程寫出直線;(2)法一:聯(lián)立直線方程求出交點坐標,再根據(jù)兩直線垂直求出斜率,由斜截式方程寫出直線;法二: 設直線l的方程為x2y4λ(xy2)0,即(1+λ)x(λ2)y42λ0,再根據(jù)兩直線垂直求出λ,代入得出直線方程.

試題解析:

(1)由,解得,所以交點為.

因為直線l與直線3xy-1=0平行,所以直線l的斜率為-3,

所以直線l的方程為y=-3

15x5y160.

(2)法一:解方程組P(0,2)

因為l3的斜率為,且ll3,所以直線l的斜率為-,

由斜截式可知l的方程為y=-x2

即4x3y60.

法二:設直線l的方程為x2y4λ(xy2)0,

即(1+λ)x(λ2)y42λ0.

又∵ll3,∴3×(1λ)(4)×(λ2)0,

解得λ11.

∴直線l的方程為4x3y60.

點睛: 兩條直線平行:對于兩條不重合的直線l1、l2,其斜率分別為k1、k2,則有l(wèi)1∥l2k1=k2,特別地,當直線l1、l2的斜率都不存在時,l1與l2的關系為平行.(2)兩條直線垂直:①兩直線l1、l2的斜率存在,設為k1、k2,則l1⊥l2k1k2=-1.②l1、l2中有一條直線的斜率不存在,另一條直線斜率為0時,l1與l2的關系為垂直.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為

(1)求直線的斜率和曲線C的直角坐標方程;

(2)若直線與曲線C交于A、B 兩點,設點,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結果相互獨立.

(1)求甲在4局以內(4)贏得比賽的概率;

(2)X為比賽決出勝負時的總局數(shù),求X的分布列和均值(數(shù)學期望)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 在區(qū)間內單調遞減,在區(qū)間內單調遞增,且上有三個零點,1是其中一個零點.

(1)求的取值范圍;

(2)若直線在曲線的上方部分所對應的的集合為,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面, 為棱中點.

(1)求證: 平面;

(2)若中點, ,試確定的值,使二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三(1)班全體女生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題

(1)求高三(1)班全體女生的人數(shù);

(2)求分數(shù)在[80,90)之間的女生人數(shù)并計算頻率分布直方圖中[80,90)之間的矩形的高

(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析女生失分情況,在抽取的試卷中求至少有一份分數(shù)在[90,100]之間的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個)

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出 關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, 平面 ,點的中點.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)

(1)函數(shù)過定點,求的值;

(2)當時,求函數(shù)的最小值;

(3)是否存在實數(shù),使得(2)中關于的函數(shù)的定義域為時,值域為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案