【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)根據(jù)菱形性質(zhì)得MB⊥BC,再根據(jù)射影定義得PM⊥平面ABCD ,即得PM⊥BC ,由線面垂直判定定理得BC⊥平面PMB,最后根據(jù)面面垂直判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解平面PMC法向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)線面角與向量夾角互余關(guān)系求直線BN與平面PMC所成角的正弦值.
試題解析: (1)證明 ∵四邊形ABCD是菱形,∠ADC=120°,
且M是AD的中點(diǎn),∴MB⊥AD,∴MB⊥BC.
又∵P在底面ABCD的射影M是AD的中點(diǎn),
∴PM⊥平面ABCD,
又∵BC平面ABCD,∴PM⊥BC,
而PM∩MB=M,PM,MB平面PMB,
∴BC⊥平面PMB,又BC平面PBC,
∴平面MPB⊥平面PBC.
(2)解 法一 過(guò)點(diǎn)B作BH⊥MC,連接HN,
∵PM⊥平面ABCD,BH平面ABCD,∴BH⊥PM,
又∵PM,MC平面PMC,PM∩MC=M,
∴BH⊥平面PMC,
∴HN為直線BN在平面PMC上的射影,
∴∠BNH為直線BN與平面PMC所成的角,
在菱形ABCD中,設(shè)AB=2a,則MB=AB·sin 60°=a,
MC==a.
又由(1)知MB⊥BC,
∴在△MBC中,BH==a,
由(1)知BC⊥平面PMB,PB平面PMB,
∴PB⊥BC,∴BN=PC=a,
∴sin∠BNH===.
法二 由(1)知MA,MB,MP兩兩互相垂直,以M為坐標(biāo)原點(diǎn),以MA,MB,MP所在直線為x軸、y軸、z軸建立如圖所示的空間直角坐標(biāo)系M-xyz,不妨設(shè)MA=1,
則M(0,0,0),A(1,0,0),B(0,,0),P(0,0,
∵N是PC的中點(diǎn),∴N,
設(shè)平面PMC的法向量為n=(x0,y0,z0),
又∵=(0,0,),=(-2,,0),
∴即
令y0=1,則n=,|n|=,
又∵=,||=,
|cos〈,n〉|==.
所以,直線BN與平面PMC所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的一個(gè)焦點(diǎn)與拋物線y2=-4x的焦點(diǎn)相同,且橢圓C上一點(diǎn)與橢圓C的左,右焦點(diǎn)F1,F2構(gòu)成的三角形的周長(zhǎng)為.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△AOB的重心G滿(mǎn)足: ,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的奇函數(shù)的導(dǎo)函數(shù)為,當(dāng)時(shí),,若,,,則,,的大小關(guān)系正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)的區(qū)人大代表有教師6人,分別來(lái)自甲、乙、丙、丁四個(gè)學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報(bào)告宣講團(tuán),要求甲、乙、丙、丁四個(gè)學(xué)校中,每校至多選出1名.
(1)請(qǐng)列出十九大報(bào)告宣講團(tuán)組成人員的全部可能結(jié)果;
(2)求教師被選中的概率;
(3)求宣講團(tuán)中沒(méi)有乙校教師代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形面積為2.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點(diǎn),且與軸,軸交于兩點(diǎn).
(i)若,求的值;
(ii)若點(diǎn)的坐標(biāo)為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[-4,4]上的奇函數(shù),當(dāng)x∈(0,4]時(shí),函數(shù)的解析式為 (a∈R), 且.
(1)試求a的值;
(2)求f(x)在[-4,4]上的解析式;
(3)求f(x)在[-4,0)上的最值(最大值和最小值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是實(shí)常數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的奇偶性,并給出證明;
(2)若是奇函數(shù),不等式有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)部分圖象如圖所示.
(1)求函數(shù)的解析式及的單調(diào)遞增區(qū)間;
(2)把函數(shù)圖象上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,得到函數(shù)的圖象,求關(guān)于x的方程在上所有的實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿(mǎn)足條件.證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com