已知橢圓的離心率為,且過點

(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線A   C、BD過原點O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;

(1). (2)(i)的最大值為2.  (ii)
.即,四邊形ABCD的面積為定值        

解析試題分析:(1)由題意,,又,              2分
解得,橢圓的標準方程為.                      4分
(2)設直線AB的方程為,設
聯(lián)立,得 
     -①
                                                    6分
  
                            7分

=                          8分

                                                    9分
(i)


k=0(此時滿足①式),即直線AB平行于x軸時,的最小值為-2.
又直線AB的斜率不存在時,所以的最大值為2.              11分
(ii)設原點到直線AB的距離為d,則

.
即,四邊形ABCD的面積為定值                      13分
考點:本題考查了直線與圓錐曲線的位置關系
點評:對于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時結合一元二次方程根與系數(shù)的關系進行求解;而對于最值問題,則可將該表達式用直線斜率k表示,然后根據(jù)題意將其進行化簡結合表達式的形式選取最值的計算方式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線的頂點為,該雙曲線又與直線交于兩點,且為坐標原點)。
(1)求此雙曲線的方程;
(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的長軸長為,一個焦點的坐標為(1,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(。┤糁本l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點M是圓C:上的一點,且軸,為垂足,點滿足,記動點的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標原點,求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線上任意一點;
(1)求證:點到雙曲線的兩條漸近線的距離的乘積是一個常數(shù);
(2)設點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數(shù),使,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,離心率為。
(1)若,求橢圓的方程。
(2)設直線與橢圓相交于兩點,分別為線段的中點。若坐標原點在以線段為直徑的圓上,且,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,定點,橢圓短軸的端點是,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點且斜率不為的直線交橢圓兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知三點,曲線上任一點滿足=
(1) 求曲線的方程;
(2) 設是(1)中所求曲線上的動點,定點,線段的垂直平分線與軸交于點,求實數(shù)的最小值.

查看答案和解析>>

同步練習冊答案