【題目】以下四個(gè)命題正確的個(gè)數(shù)(
①用反證法證明數(shù)學(xué)命題時(shí)首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個(gè)奇數(shù)”時(shí)正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個(gè)奇數(shù)或都是偶數(shù)”;
②在復(fù)平面內(nèi),表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)關(guān)于實(shí)軸對稱;
③在回歸直線方程 =﹣0.3x+10中,當(dāng)變量x每增加一個(gè)單位時(shí),變量 平均增加0.3個(gè)單位;
④拋物線y=x2過點(diǎn)( ,2)的切線方程為2x﹣y﹣1=0.
A.1
B.2
C.3
D.4

【答案】B
【解析】解:對命題進(jìn)行一一判斷:
①用反證法證明數(shù)學(xué)命題時(shí)首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個(gè)奇數(shù)”時(shí)正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個(gè)奇數(shù)或都是偶數(shù)”,故①正確;
②在復(fù)平面內(nèi),表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)關(guān)于實(shí)軸對稱,故②正確;
③在回歸直線方程 =﹣0.3x+10中,當(dāng)變量x每增加一個(gè)單位時(shí),變量 平均減少0.3個(gè)單位,故③錯(cuò)誤;
④拋物線y=x2過點(diǎn)( ,2)的切線方程為2x﹣y﹣1=0或4x﹣y﹣4=0.
取拋物線上一點(diǎn)(x0 , y0),
∵y′=2x,∴拋物線y=x2上一點(diǎn)(x0 , y0)的切線方程為y﹣ =2x0(x﹣x0),
∵切線過點(diǎn)( ,2),將點(diǎn)( ,2)代入切線方程,
﹣3x0+2=0,
∴x0=1或x0=2,
故拋物線y=x2過點(diǎn)( ,2)的切線方程為2x﹣y﹣1=0或4x﹣y﹣4=0.
故④錯(cuò)誤.
綜上,①②正確,
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三角形中, 分別是邊上的點(diǎn),滿足 (如圖),將沿折起到的位置,使二面角成直二面角,連接 (如圖).

(1) 求證: 平面

(2)求二面角的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙丙三人在進(jìn)行一項(xiàng)投擲骰子游戲中規(guī)定:若擲出1點(diǎn),甲得1分,若擲出2點(diǎn)或3點(diǎn),乙得1分;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙得1分,前后共擲3次,設(shè)x,y,z分別表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)記ξ=x+z,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿足 ≤0,
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{fn(x)}滿足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明對fn(x)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)為定義在R奇函數(shù),當(dāng)x>0時(shí),f(x)=﹣2x2+4x+1,
(1)求:當(dāng)x<0時(shí),f(x)的表達(dá)式;
(2)用分段函數(shù)寫出f(x)的表達(dá)式;
(3)若函數(shù)h(x)=f(x)﹣a恰有三個(gè)零點(diǎn),求a的取值范圍(只要求寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知( n的展開式中,第三項(xiàng)的系數(shù)為144.
(1)求該展開式中所有偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(2)求該展開式的所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據(jù)以往經(jīng)驗(yàn)?zāi)尺x手投擲一次命中8環(huán)以上的概率為.現(xiàn)采用計(jì)算機(jī)做模擬實(shí)驗(yàn)來估計(jì)該選手獲得優(yōu)秀的概率: 用計(jì)算機(jī)產(chǎn)生0到9之間的隨機(jī)整數(shù),用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下 20 組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

031 257 393 527 556 488 730 113 537 989

據(jù)此估計(jì),該選手投擲 1 輪,可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案