【題目】如圖1,,過動點,垂足在線段上且異于點,連接,沿折起,使(如圖2所示),

1)當(dāng)的長為多少時,三棱錐的體積最大;

2)當(dāng)三棱錐的體積最大時,設(shè)點分別為棱的中點,試在棱上確定一點,使得,并求與平面所成角的大小.

【答案】1 ;(2,

【解析】

1)設(shè),先利用線面垂直的判定定理證明即為三棱錐的高,再將三棱錐的體積表示為的函數(shù),最后利用導(dǎo)數(shù)求函數(shù)的最大值即可;

2)由(1)可先建立空間直角坐標(biāo)系,寫出相關(guān)點的坐標(biāo)和相關(guān)向量的坐標(biāo),設(shè)出動點的坐標(biāo),先利用線線垂直的充要條件計算出點坐標(biāo),從而確定點位置,再求平面的法向量,從而利用夾角公式即可求得所求線面角

(1)設(shè),則

∵折起前,∴折起后

平面

設(shè),

,∴上為增函數(shù),在上為減函數(shù)

∴當(dāng)時,函數(shù)取最大值

∴當(dāng)時,三棱錐的體積最大;

(2)以為原點,建立如圖直角坐標(biāo)系

由(1)知,三棱錐的體積最大時,,

,且

設(shè),則

,∴

,

,∴,

∴當(dāng)時,

設(shè)平面的一個法向量為,由

,取

設(shè)與平面所成角為,則

,

與平面所成角的大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x22acoskπlnxkN*,aRa0).

1)討論函數(shù)fx)的單調(diào)性;

2)若k2018,關(guān)于x的方程fx)=2ax有唯一解,求a的值;

3)當(dāng)k2019時,證明:對一切x∈(0+∞),都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】普通高中國家助學(xué)金,用于資助家庭困難的在校高中生.在本地,助學(xué)金分一等和二等兩類,一等助學(xué)金每學(xué)期1250元,二等助學(xué)金每學(xué)期750元,并規(guī)定:屬于農(nóng)村建檔立卡戶的學(xué)生評一等助學(xué)金.某班有10名獲得助學(xué)金的貧困學(xué)生,其中有3名屬于農(nóng)村建檔立卡戶,這10名學(xué)生中有4名獲一等助學(xué)金,另6名獲二等助學(xué)金.現(xiàn)從這10名學(xué)生中任選3名參加座談會.

)若事件A表示“選出的3名同學(xué)既有建檔立卡戶學(xué)生,又有非建檔立卡戶學(xué)生”,求A的概率;

)設(shè)X為選出的3名同學(xué)一學(xué)期獲助學(xué)金的總金額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對邊的邊長分別是,已知,

的面積等于,求;

,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上頂點為,以為圓心橢圓的長半軸為半徑的圓與軸的交點分別為,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)不經(jīng)過點的直線與橢圓交于兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標(biāo),若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】”是“直線與直線平行”的( )

A. 充分而不必要條件B. 必要而充分不條件

C. 充要條件D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課外使用手機(jī)的情況,某研究學(xué)習(xí)小組為研究學(xué)校學(xué)生一個月使用手機(jī)的總時間,收集了500名學(xué)生201912月課余使用手機(jī)的總時間(單位:小時)的數(shù)據(jù).從中隨機(jī)抽取了50名學(xué)生,將數(shù)據(jù)進(jìn)行整理,得到如圖所示的頻率分布直方圖.已知這50人中,恰有2名女生的課余使用手機(jī)總時間在區(qū)間,現(xiàn)在從課余使用手總時間在樣本對應(yīng)的學(xué)生中隨機(jī)抽取2人,則至少抽到1名女生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,,.數(shù)列滿足,且.

1)求的值;

2)求數(shù)列的通項公式;

3)設(shè)數(shù)列的前項和為,若對于任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P3)是橢圓C1上的點,QP關(guān)于x軸的對稱點,橢圓C的離心率為.

1)求橢圓C的方程;

2AB是橢圓上位于直線PQ兩側(cè)的動點.

①若直線AB的斜率為,求四邊形APBQ面積的最大值.

②當(dāng)A、B在運動過程中滿足∠APQ=∠BPQ時,問直線AB的斜率是否為定值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案