<form id="cqlid"></form>
某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成。
(1)求出甲考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(2)若考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。試從至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.
(Ⅰ)分布列為:

1
2
3




; 
(Ⅱ)甲的實(shí)驗(yàn)操作能力較強(qiáng)。

試題分析:(Ⅰ)設(shè)考生甲正確完成實(shí)驗(yàn)操作的題數(shù)分別為,
,所以,         2分
所以考生甲正確完成實(shí)驗(yàn)操作的題數(shù)的概率分布列為:

1
2
3




;            4分
(Ⅱ)設(shè)考生乙正確完成實(shí)驗(yàn)操作的題數(shù)為,則
,所以,          6分

,             8分
從至少正確完成2題的概率考察,甲通過的可能性大,
因此可以判斷甲的實(shí)驗(yàn)操作能力較強(qiáng)。             10分
點(diǎn)評(píng):求解離散型隨機(jī)變量的分布列的關(guān)鍵是要搞清取每一個(gè)值對(duì)應(yīng)的隨機(jī)事件.進(jìn)一步利用排列組合知識(shí)求出取每個(gè)值的概率,對(duì)于數(shù)學(xué)期望問題,先從ξ的分布列入手,代入期望公式即可求得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某6張券中有一等獎(jiǎng) 券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券1張,每張可獲價(jià)值20元的獎(jiǎng)品;其余4張沒有獎(jiǎng).某顧客從此6張中任抽1張,求:
(1)該顧客中獎(jiǎng)的概率;
(2)該顧客參加此活動(dòng)可能獲得的獎(jiǎng)品價(jià)值的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三人獨(dú)立破譯同一密碼,已知三人各自破譯出密碼的概率分別為,且他們是否譯出密碼互不影響。
(1)求恰有兩人破譯出密碼的概率;
(2)“密碼被破譯”與“密碼未被破譯”的概率那個(gè)大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校有甲、乙、丙三名學(xué)生報(bào)名參加2012年高校自主招生考試,三位同學(xué)通過自主招生考試考上大學(xué)的概率分別是,且每位同學(xué)能否通過考試時(shí)相互獨(dú)立的。
(Ⅰ)求恰有一位同學(xué)通過高校自主招生考試的概率;
(Ⅱ)若沒有通過自主招生考試,還可以參加2012年6月的全國(guó)統(tǒng)一考試,且每位同學(xué)通過考試的概率均為,求這三位同學(xué)中恰好有一位同學(xué)考上大學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某5個(gè)同學(xué)進(jìn)行投籃比賽,已知每個(gè)同學(xué)投籃命中率為,每個(gè)同學(xué)投籃2次,且投籃之間和同學(xué)之間都沒有影響.現(xiàn)規(guī)定:投中兩個(gè)得100分,投中一個(gè)得50分,一個(gè)未中得0分,記為5個(gè)同學(xué)的得分總和,則的數(shù)學(xué)期望為(  )
A.400B.200C.100D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,長(zhǎng)方形的面積為2,將100顆豆子隨機(jī)地撒在長(zhǎng)方形內(nèi),其中恰好有60顆豆子落在陰影部分內(nèi),則用隨機(jī)模擬的方法可以估計(jì)圖中陰影部分的面積為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某人射擊一次擊中的概率為0.6,經(jīng)過3次射擊,此人恰有兩次擊中目標(biāo)的概率為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某廠生產(chǎn)的燈泡能用3000小時(shí)的概率為0.8,能用4500小時(shí)的概率為0.2,則已用3000小時(shí)的燈泡能用到4500小時(shí)的概率為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機(jī)變量服從正態(tài)分布,,則 _____    

查看答案和解析>>

同步練習(xí)冊(cè)答案