【題目】釣魚島事件以來,中日關(guān)系日趨緊張并不斷升級.為了積極響應(yīng)保釣行動,某學(xué)校舉辦了一場保釣知識大賽,共分兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的同學(xué)中,每組各任選1個同學(xué),作為保釣行動代言人”.

(1)求選出的2個同學(xué)中恰有1個女生的概率;

(2)設(shè)X為選出的2個同學(xué)中女生的個數(shù),求X的分布列和數(shù)學(xué)期望.

【答案】(1).(2)分布列見解析,.

【解析】分析:(1)設(shè)事件A表示選出的2個同學(xué)中恰有1個女生”,由此利用互斥事件概率加法公式能求出選出的2個同學(xué)中恰有一個女生的概率;

(2)由題意知X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.

詳解:(1)設(shè)事件A表示選出的2個同學(xué)中恰有1個女生”,則選出的2個同學(xué)中恰有1個女生的概率為:.

(2)P(X=0)=1/2, P(X=1)=5/12 ,P(X=2)=1/12, 分布列為

X

0

1

2

P

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直二面角中,四邊形是邊長為2的正方形,上的點,且平面.

(1)求證:

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形所在的平面與長方形所在的平面垂直,.點邊的中點,點分別在線段上,且.

(1)證明:

(2)求二面角的正切值;

(3)求直線與直線PG所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上的值域為,則稱區(qū)間為函數(shù)的一個“倒值區(qū)間”.定義在上的奇函數(shù),當時,

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)上的“倒值區(qū)間”;

(Ⅲ)記函數(shù)在整個定義域內(nèi)的“倒值區(qū)間”為,設(shè),則是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像有兩個不同的交點?若存在,求出的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙的半徑為,圓心的坐標為,其中為該圓的兩條切線,為坐標原點,,為切點,在第一象限,在第四象限.

)若時,求切線,的斜率.

)若時,求外接圓的標準方程.

)當點在軸上運動時,將表示成的函數(shù),并求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤額/百萬元

2

3

3

4

5

(1)畫出銷售額和利潤額的散點圖;

(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額對銷售額的回歸直線方程;

(3)據(jù)(2)的結(jié)果估計當銷售額為4千萬元時的利潤額.

(附:線性回歸方程:,,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機選取男,女同學(xué)各50人進行研究,對這100名學(xué)生在音樂、美術(shù)、戲劇、舞蹈等多個藝術(shù)項目進行多方位的素質(zhì)測評,并把調(diào)查結(jié)果轉(zhuǎn)化為個人的素養(yǎng)指標,制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).

,則認定該同學(xué)為“初級水平”,若,則認定該同學(xué)為“中級水平”,若,則認定該同學(xué)為“高級水平”;若,則認定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.

(I)從50名女同學(xué)的中隨機選出一名,求該同學(xué)為“初級水平”的概率;

(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;

(Ⅲ)試比較這100名同學(xué)中,男、女生指標的方差的大小(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,焦點在x軸上的橢圓C: =1經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).

(1)求橢圓C的標準方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若 = ,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當時,求滿足的取值:

(2)若函數(shù)是定義在上的奇函數(shù)

①存在,不等式有解,求的取值范圍;

②若函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案