(本小題滿分13分)
已知橢圓經(jīng)過點(diǎn)(p,q),離心率其中p,q分別表示標(biāo)準(zhǔn)正態(tài)分布的期望值與標(biāo)準(zhǔn)差。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為。①試建立的面積關(guān)于m的函數(shù)關(guān)系;②莆田十中高三(1)班數(shù)學(xué)興趣小組通過試驗(yàn)操作初步推斷:“當(dāng)m變化時(shí),直線與x軸交于一個(gè)定點(diǎn)”。你認(rèn)為此推斷是否正確?若正確,請寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請說明理由。
解:(1)依題意橢圓過點(diǎn)(0,1),從而可得…………2分
解得 …………3分
所以橢圓C的方程是 …………4分
(2)①由
得即…………5分
記
則………6分 易求S= 8分 ②
特別地,令,則
此時(shí),直線與x軸的交點(diǎn)為S(4,0)
若直線與x軸交于一個(gè)定點(diǎn),則定點(diǎn)只能為S(4,0) …………9分
以下證明對于任意的m,直線與x軸交于定點(diǎn)S(4,0)
事實(shí)上,經(jīng)過點(diǎn)的直線方程為
令y=0,得
只需證明 …………11分
即證
即證
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052312264195319073/SYS201205231229482656572265_DA.files/image023.png">
所以成立。
這說明,當(dāng)m變化時(shí),直線與x軸交于點(diǎn)S(4,0) …………13分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com