如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求證:PC⊥BC
(2)求點(diǎn)A到平面PBC的距離.

(1)BC⊥PC;(2).

解析試題分析:(1)要證線線垂直,要從線面垂直角度入手,根據(jù)題中所給條件易知BC⊥平面PDC,而PC在平面PDC,從而能夠證明出BC⊥PC. (2)要求點(diǎn)到面的距離,常用到等體積定理,由已知條件可知
VA-PBC=VP-ABC ,而通過計算可知VP-ABCSABC·PD=,接下來只需要求出△PBC的面積,這樣根據(jù)SPBC·h=,∴h=,所以點(diǎn)A到平面PBC的距離為.
試題解析:(1)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC.
由∠BCD=90°知,BC⊥DC,
∵PD∩DC=D,∴BC⊥平面PDC,
∴BC⊥PC.
(2)設(shè)點(diǎn)A到平面PBC的距離為h,
∵AB∥DC,∠BCD=90°,∴∠ABC=90°,
∵AB=2,BC=1,∴SABCAB·BC=1,
∵PD⊥平面ABCD,PD=1,
∴VP-ABCSABC·PD=
∵PD⊥平面ABCD,∴PD⊥DC,
∵PD=DC=1,∴PC=,
∵PC⊥BC,BC=1,
∴SPBCPC·BC=,
∵VA-PBC=VP-ABC
SPBC·h=,∴h=
∴點(diǎn)A到平面PBC的距離為.
考點(diǎn):1.線線垂直的證明;2.點(diǎn)到面的距離的求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,斜四棱柱的底面是矩形,平面⊥平面分別為的中點(diǎn).

求證:
(1);(2)∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是邊長為2的正三角形,若平面,平面平面,,且

(Ⅰ)求證://平面;
(Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,,,側(cè)面為等邊三角形

(1)證明:
(2)求AB與平面SBC所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,平面,底面為直角梯形,,,,

(1)求證:⊥平面
(2)求異面直線所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正三棱柱中,,分別為,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D為AC的中點(diǎn),AC=BC=AA1=A1C=2。

(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC; (2)求證:平面ABC⊥平面APC.

查看答案和解析>>

同步練習(xí)冊答案