【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程 = x+ ,其中 =﹣20, = ﹣
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入﹣成本)
【答案】
(1)解: = (8+8.2+8.4+8.6+8.8+9)=8.5,
= (90+84+83+80+75+68)=80;
∵y= x+ , =﹣20
∴80=﹣20×8.5+ ,
∴ =250
∴ =﹣20x+250.
(2)解:設(shè)工廠獲得的利潤為L元,則
L=x(﹣20x+250)﹣4(﹣20x+250)=﹣20 +361.25,
∴該產(chǎn)品的單價應(yīng)定為 元時,工廠獲得的利潤最大.
【解析】(1)利用回歸直線過樣本的中心點( , ),即可求出回歸直線方程;(2)設(shè)工廠獲得利潤為L元,利用利潤=銷售收入﹣成本,建立函數(shù)關(guān)系,用配方法求出工廠獲得的最大利潤.
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且2Sn=(an﹣1)(an+2),
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)列{ }的前n項和為Tn , 試比較Tn與 的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sinx的圖象經(jīng)過下列哪種變換可以得到函數(shù)y=cos2x的圖象( )
A.先向左平移 個單位,然后再沿x軸將橫坐標壓縮到原來的 倍(縱坐標不變)
B.先向左平移 個單位,然后再沿x軸將橫坐標伸長到原來的2倍(縱坐標不變)
C.先向左平移 個單位,然后再沿x軸將橫坐標壓縮到原來的 倍(縱坐標不變)
D.先向左平移 個單位,然后再沿x軸將橫坐標伸長到原來的2倍(縱坐標不變)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標不變,橫坐標縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中.已知a1=b1=1.a(chǎn)2=b2 . a6=b3
(1)求等差數(shù)列{an}的通項公式an和等比數(shù)列{bn}的通項公式bn;
(2)求數(shù)列{anbn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式組 表示的平面區(qū)域為D,若(x,y)∈D,|x|+2y≤a為真命題,則實數(shù)a的取值范圍是( )
A.[10,+∞)
B.[11,+∞)
C.[13,+∞)
D.[14,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com