【題目】已知橢圓 的一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,點(diǎn) 在C上.
(1)求橢圓C的方程;
(2)若橢圓C的一條弦被M(2,1)點(diǎn)平分,求這條弦所在的直線方程.
【答案】
(1)解:由拋物線y2=8x,得拋物線焦點(diǎn)F(2,0),
∴橢圓的半焦距c=2,
由 ,解得a2=8,b2=4,
∴橢圓方程為: ;
(2)解:設(shè)弦的兩個(gè)交點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),
則 , ,
兩式作差得: ,
即 ,
∴弦所在直線方程為:y﹣1=﹣1×(x﹣2),即x+y﹣3=0.
【解析】(1)由拋物線方程得拋物線焦點(diǎn)F,從而得到橢圓的半焦距c,聯(lián)立方程組求解即可求橢圓的方程;(2)設(shè)弦的兩個(gè)交點(diǎn)坐標(biāo)分別為A(x1 , y1),B(x2 , y2),分別代入橢圓方程,由兩式作差得到弦所在直線的斜率,從而得到弦所在的直線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|≤1},N={x|y=lg(1﹣x)},則下列關(guān)系中正確的是( 。
A.(RM)∩N=
B.M∪N=R
C.MN
D.(RM)∪N=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是一幢6層的寫字樓,每層高均為3m,在正前方36m處有一建筑物,從樓頂處測得建筑物的張角為.
(1)求建筑物的高度;
(2)一攝影愛好者欲在寫字樓的某層拍攝建筑物.已知從攝影位置看景物所成張角最大時(shí),拍攝效果最佳.問:該攝影愛好者在第幾層拍攝可取得最佳效果(不計(jì)人的高度)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P(3,0)在圓C:(x﹣m)2+(y﹣2)2=40內(nèi),動(dòng)直線過點(diǎn)P且交圓C于A、B兩點(diǎn),若△ABC的面積的最大值是20,則實(shí)數(shù)m的取值范圍是( )
A.(﹣3,﹣1]∪[7,9)
B.[﹣3,﹣1]∪[7,9)
C.[7,9)
D.(﹣3,﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是:( )
A. 命題“若,則”的否命題為“若,則”
B. 命題“存在,使得”的否定是:“任意,都有”
C. 若命題“非”與命題“或”都是真命題,那么命題一定是真命題
D. 命題“若,則”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+b(a>0,a≠1)滿足f(x+y)=f(x)f(y),且f(3)=8.
(1)求實(shí)數(shù)a,b的值;
(2)若不等式|x﹣1|<m的解集為(b,a),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個(gè)數(shù)是 ( )
①“x=”是“”的充分不必要條件;
②若a>b,則am2>bm2;
③命題“x∈R,sinx≤1”的否定是“x∈R,sinx>1”;
④函數(shù)f(x)=-cosx在[0,+∞)內(nèi)有且僅有兩個(gè)零點(diǎn).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,若對(duì)任意,存在,使得 成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com