【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高二年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.

分?jǐn)?shù)段

3

9

18

15

6

9

6

4

5

10

13

2

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828


(1)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,數(shù)學(xué)成績(jī)與性別是否有關(guān);
(2)規(guī)定80分以上者為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出 列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.

【答案】
(1)

解:男生的平均分為:

女生的平均分為:

從男、女生各自的平均分來(lái)看,并不能判斷數(shù)學(xué)成績(jī)與性別有關(guān).


(2)

解:由頻數(shù)分布表可知:在抽取的100名學(xué)生中,“男生組”中的優(yōu)分有15人,“女生組”中的優(yōu)分有15人,據(jù)此可得 列聯(lián)表如下:

優(yōu)分

非優(yōu)分

合計(jì)

男生

15

45

60

女生

15

25

40

合計(jì)

30

70

100

可得 ,

因?yàn)? ,所以沒(méi)有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.


【解析】本題主要考查了獨(dú)立性檢驗(yàn)的應(yīng)用,解決問(wèn)題的關(guān)鍵是(1)根據(jù)分層比 ,男生抽取60人,女生抽取40人,利用頻數(shù)分布表計(jì)算平均值,用每一段的中點(diǎn)計(jì)算加權(quán)平均數(shù),(2)根據(jù)頻數(shù)分布表填寫(xiě) 列聯(lián)表,根據(jù) 的計(jì)算公式,和 比較大小,小說(shuō)明沒(méi)有 把握認(rèn)為有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),在矩形ABCD中, , ,OAB的中點(diǎn),點(diǎn)E、FG分別在BC、CD、DA上移動(dòng),且,PGEOF的交點(diǎn)(如圖),問(wèn)是否存在兩個(gè)定點(diǎn),使P到這兩點(diǎn)的距離的和為定值?若存在,求出這兩點(diǎn)的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)+x是偶函數(shù),且f(2)=lg32+log416+6lg +lg ,若g(x)=f(x)+1,則g(﹣2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范圍
(2)若a=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)= .g(x)= ,
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的解析式;
(2)求g(x)的解析式,并證明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)存在兩個(gè)零點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“ALS冰桶挑戰(zhàn)賽”是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的籌款活動(dòng),活動(dòng)規(guī)定:被邀請(qǐng)者要么在24小時(shí)內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng).若被邀請(qǐng)者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請(qǐng)另外3個(gè)人參與這項(xiàng)活動(dòng).假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828


(1)若某參與者接受挑戰(zhàn)后,對(duì)其他3個(gè)人發(fā)出邀請(qǐng),則這3個(gè)人中恰有2個(gè)人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機(jī)構(gòu)進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查得到如下 列聯(lián)表:

接受挑戰(zhàn)

不接受挑戰(zhàn)

合計(jì)

男性

50

10

60

女性

25

15

40

合計(jì)

75

25

100

根據(jù)表中數(shù)據(jù),是否有99%的把握認(rèn)為“冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在(﹣1,+∞)內(nèi)的增函數(shù),且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x﹣1
(1)求f(﹣3)的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案