在正△ABC中,E,F(xiàn),P分別是AB,AC,BC邊上的點(diǎn),滿足,將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B,A1P.
(1)求證:A1E⊥平面BEP;
(2)求直線A1E與平面A1BP所成角的大。

【答案】分析:(1)取BE的中點(diǎn)D,連接DF.說明∠A1EB為二面角A1-EF-B的平面角,證明二面角A1-EF-B為直二面角,證明A1E┴平面BEF,即可證明A1E⊥平面BEP;
(2)建立空間直角坐標(biāo)系,求出,平面A1BP的法向量,利用,求直線A1E與平面A1BP所成角的大。
解答:解:不妨設(shè)正三角形的邊長為3.
(1)在圖1中,取BE的中點(diǎn)D,連接DF.
,AF=AD=2,又∠A=60°,△ADF為正三角形.
又∵AE=ED=1,
∴EF┴AD,
∴在圖2中有A1E┴EF,BE┴EF.
∴∠A1EB為二面角A1-EF-B的平面角.
∵二面角A1-EF-B為直二面角,
∴A1E┴BE
又∵BE∩EF=E,
∴即A1E┴平面BEF,即A1E┴平面BEP
(2)由(1)可知,A1E┴平面BEP,BE┴EF,建立坐標(biāo)系則E(0,0,0),A1(0,0,1),(2,0,0),
F(0,,0),D(1,0,0),不難得出EF∥DP且EF=DP,DE∥EP且DE=FP.
故P點(diǎn)的坐標(biāo)為(1,,0),

設(shè)平面A1BP的法向量=(x,y,z),



∴A1E與平面A1BP所成角的大小為
點(diǎn)評(píng):本題考查用空間向量求直線與平面的夾角,考查計(jì)算能力,空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正△ABC中,E,F(xiàn),P分別是AB,AC,BC邊上的點(diǎn),滿足
AE
EB
=
CF
FA
=
CP
PB
=
1
2
,將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B,A1P.
(1)求證:A1E⊥平面BEP;
(2)求直線A1E與平面A1BP所成角的大。
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正△ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),滿足AE∶EB=CF∶FA=CP∶PB=1∶2如圖(1).將△AEF沿EF折起到△A1EF的位置,使二面角A1—EF—B成直二面角,連結(jié)A1B、A1P如圖(2).

(1)求證:A1E⊥平面BEP;

(2)求直線A1E與平面A1BP所成角的大。

(3)求二面角B—A1P—F的大。ㄓ梅慈呛瘮(shù)值表示).

              (1)                             (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省六校聯(lián)盟高三(下)回頭考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在正△ABC中,E,F(xiàn),P分別是AB,AC,BC邊上的點(diǎn),滿足,將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B,A1P.
(1)求證:A1E⊥平面BEP;
(2)求直線A1E與平面A1BP所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年江蘇省揚(yáng)州中學(xué)高考數(shù)學(xué)四模試卷(解析版) 題型:解答題

在正△ABC中,E,F(xiàn),P分別是AB,AC,BC邊上的點(diǎn),滿足,將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連接A1B,A1P.
(1)求證:A1E⊥平面BEP;
(2)求直線A1E與平面A1BP所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案