【題目】已知等比數(shù)列中, ,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,即可求數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用錯(cuò)位相減法即可得到數(shù)列的和.
試題解析:(1),即.
(2) , ①
(i)當(dāng)時(shí), ;(ii)當(dāng)時(shí), , ②
①-②得, ,整理得,由(i)(ii)得.
【 方法點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)與求和公式以及錯(cuò)位相減法求數(shù)列的的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從分別寫有的張卡片中隨機(jī)抽取張,放回后再隨機(jī)抽取張,則抽得的第一張卡片,上的數(shù)不大于第二張卡片上的數(shù)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,
PA=AD,F為PD的中點(diǎn).
(1)求證:AF⊥平面PDC;
(2)求直線AC與平面PCD所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,且acos B=3,bsin A=4.
(1)求邊長(zhǎng)a;
(2)若△ABC的面積S=10,求△ABC的周長(zhǎng)l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中正確的是( ).
①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面互相平行;
②若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和另一個(gè)平面垂直;
③若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線一定平行于另一個(gè)平面;
④若兩個(gè)平面垂直,那么,一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.
A. ②和④ B. ②和③ C. ③和④ D. ①和②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】遼寧號(hào)航母紀(jì)念章從2012年10月5日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每枚的市場(chǎng)價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:
上市時(shí)間天 | |||
市場(chǎng)價(jià)元 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系:①;②;③;
(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)設(shè)你選取的函數(shù)為,若對(duì)任意實(shí)數(shù),關(guān)于的方程恒有個(gè)想異實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖, ,圖中的一系列圓是圓心分別為, 的兩組同心圓,每組同心圓的半徑依次為, , ,
按“加”依次遞增,點(diǎn)是某兩圓的一個(gè)交點(diǎn),設(shè):
以, 為焦點(diǎn),且過(guò)點(diǎn)的橢圓為;
以, 為焦點(diǎn),且過(guò)點(diǎn)的雙曲線為,
則
()雙曲線離心率__________.
()若以為軸正方向,線段中點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,則
橢圓方程為__________.
(3)雙曲線漸近線方程為__________.
(4)在兩組同心圓的交點(diǎn)中,在橢圓上的點(diǎn)共__________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每年的3月份,濮陽(yáng)市政府都會(huì)發(fā)動(dòng)市民參與到植樹(shù)綠化活動(dòng)中去林業(yè)管理部門為了保證樹(shù)苗的質(zhì)量都會(huì)在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè),現(xiàn)從甲、乙兩種樹(shù)苗中各抽測(cè)了株樹(shù)苗,量出它們的高度如下(單位:厘米),
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖并根據(jù)莖葉圖對(duì)甲、乙兩種樹(shù)苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的株甲種樹(shù)苗高度平均值為,將這株樹(shù)苗的高度依次輸人,按程序框(如圖)進(jìn)行運(yùn)算,問(wèn)輸出的大小為多少?并說(shuō)明的統(tǒng)計(jì)學(xué)意義,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面,側(cè)面是邊長(zhǎng)為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com