【題目】在平面直角坐標平面中,的兩個頂點為,平面內兩點、同時滿足:++=;②||=||=||;③

1)求頂點的軌跡的方程;

(2)過點作兩條互相垂直的直線,直線與點的軌跡相交弦分別為,設弦的中點分別為.求四邊形的面積的最小值;

【答案】(1) ;(2),即時取等號.

【解析】

(1)由++=可得P為ABC的重心,設A(x,y),則P(),再由||=||=||,知Q是ABC的外心,Q在x軸上,再由,可得Q(),結合||=||求得頂點A的軌跡E的方程;

(2)F(,0)恰為的右焦點.當直線l1,l2的斜率存在且不為0時,設直線l1 的方程為my=x﹣.聯(lián)立直線方程與橢圓方程,化為關于y的一元二次方程,利用根與系數(shù)的關系求得A、B的縱坐標得到和與積,根據焦半徑公式得|A1B1|、|A2B2|,代入四邊形面積公式再由基本不等式求得四邊形A1A2B1B2的面積S的最小值.

(1),由①知,的重心,設,則由②知的外心,∴軸上由③知,由,得,化簡整理得:

(2)解:恰為的右焦點,

①當直線的斜率存且不為0時,設直線的方程為,

,

①根據焦半徑公式得,

,

所以,同理

,

,即時取等號.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣klnx,(常數(shù)k>0).
(1)試確定函數(shù)f(x)的單調區(qū)間;
(2)若對于任意x≥1,f(x)>0恒成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , a1=1,an= +2(n﹣1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關于n的表達式;
(2)設數(shù)列 的前n項和為Tn , 證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點,DE=EC.

(1)求證:平面ABE⊥平面BEF;
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍(
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項公式;
(2)設數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的單調遞增區(qū)間;
(2)當x∈[0, ]時,函數(shù) y=f(x)的最小值為 ,試確定常數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2016x+log2016 +x)﹣2016x+2,則關于x的不等式f(3x+1)+f(x)>4的解集為(
A.(﹣ ,+∞)
B.(﹣∞,﹣
C.(0,+∞)
D.(﹣∞,0)

查看答案和解析>>

同步練習冊答案