拋物線處的切線與兩坐標(biāo)軸圍成三角形區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024116520315.png" style="vertical-align:middle;" />(包含三角形內(nèi)部與邊界).若點(diǎn)是區(qū)域內(nèi)的任意一點(diǎn),則的取值范圍是__________.

試題分析:由,所以,,拋物線處的切線方程為.令,則
畫(huà)出可行域如圖,

所以當(dāng)直線過(guò)點(diǎn)時(shí),
過(guò)點(diǎn)時(shí),.故答案為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)。
(1)如果,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若處取得極大值,求實(shí)數(shù)的值;
(2)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)點(diǎn)為函數(shù)的圖象上任意一點(diǎn),若曲線在點(diǎn)處的切線的斜率恒大于
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)上是增函數(shù),
(1)求實(shí)數(shù)的取值集合;
(2)當(dāng)取值集合中的最小值時(shí),定義數(shù)列;滿足,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(Ⅰ)證明:當(dāng),
(Ⅱ)設(shè)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)若函數(shù)在x = 0處取得極值.
(1) 求實(shí)數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3) 證明:對(duì)任意的自然數(shù)n,有恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,的導(dǎo)函數(shù),滿足
(1)求;
(2)設(shè),,求函數(shù)上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知l是曲線的傾斜角最小的切線,則l的方程為_(kāi)___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案