已知函數(shù)y=f(x)的圖象如所示,設(shè)其定義域為A,值域為C;則對于下列表述:
①A=[-5,6);
②A=[-5,0]∪[2,6);
③C=[0,+∞);
④C=[2,5];
⑤方程f(x)=1的解只有一個;
⑥對于值域C中的每一個y,在A中都有唯一的x與之對應(yīng);
正確的有
 
(填序號)
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:認(rèn)真觀察函數(shù)的圖象,結(jié)合圖象能夠得到函數(shù)y=f(x)的定義域和值域,然后進行判斷.
解答: 解:結(jié)合圖象形狀可知,{x|-5≤x≤0}∪{x|2≤x<6}=[-5,0]∪[2,6),
{y|2≤y≤5}∪{y|y≥0}=[0,+∞).
∴函數(shù)y=f(x)的定義域是[-5,0]∪[2,6),值域是[0,+∞).
故②③正確,
由圖象可知⑤方程f(x)=1的解只有一個是正確的.在值域[2,5]每一個y,在A中都有兩個x與之對應(yīng),故⑥不正確.
故答案為:②③⑤
點評:本題主要考查了識圖能力,認(rèn)真觀察圖象,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AB=2,AA1=4,E、F分別為AA1、BC的中點.
(Ⅰ)求證:直線AF∥平面BEC1
(Ⅱ)求點C到平面BEC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,曲線y=x2-1及x軸圍成圖形的面積S為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件:
x≥0
2x+y≤3
x+2y≥3
,則z=
x2
2
+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為2的正方體,其外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M和N中的元素個數(shù)相同,且M∪N={1,2,3,4},則M,N的不同構(gòu)成方式有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≥2
3x-y≥1
y≥x+1
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最小值為2,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xln|x|(x≠0)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,如果輸出的函數(shù)值在區(qū)間[1,3]上,則輸入的實數(shù)x的取值范圍是( 。
A、{x∈R|0≤x≤log23}
B、{x∈R|-2≤x≤2}
C、{x∈R|0≤x≤log23,或x=2}
D、{x∈R|-2≤x≤log23,或x=2}

查看答案和解析>>

同步練習(xí)冊答案