【題目】已知F1是橢圓5x2+9y2=45的左焦點(diǎn),P為橢圓上半部分任意一點(diǎn),A(1,1)為橢圓內(nèi)一點(diǎn),則|PA|+|PF1|的最小值_______________
【答案】
【解析】
由橢圓5x2+9y2=45的方程化為,可得F1(﹣2,0),F(xiàn)2(2,0),由橢圓的定義可得:|PF1|+|PF2|=2a,可得|PA|+|PF1|=|PA|+2a﹣|PF2|=2a﹣(|PF2|﹣|PA|)≥2a﹣|AF2|.
由橢圓5x2+9y2=45的方程化為,可得F1(﹣2,0),F(xiàn)2(2,0),
∴|AF2|==.
如圖所示.
∵|PF1|+|PF2|=2a=6,
∴|PA|+|PF1|=|PA|+6﹣|PF2|=6﹣(|PF2|﹣|PA|)≥6﹣|AF2|=6.當(dāng)且僅當(dāng)三點(diǎn)P,A,F(xiàn)2共線時取等號.
∴|PA|+|PF1|的最小值為.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在定義域[﹣1,1]是奇函數(shù),當(dāng)x∈[﹣1,0]時,f(x)=﹣3x2 .
(1)當(dāng)x∈[0,1],求f(x);
(2)對任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊平行四邊形綠地ABCD,經(jīng)測量BC=2百米,CD=1百米,∠BCD=120°,擬過線段BC上一點(diǎn)E設(shè)計一條直路EF(點(diǎn)F在四邊形ABCD的邊上,不計路的寬度),將綠地分為面積之比為1:3的左右兩部分,分別種植不同的花卉,設(shè)EC=x百米,EF=y百米.
(1)當(dāng)點(diǎn)F與點(diǎn)D重合時,試確定點(diǎn)E的位置;
(2)試求x的值,使路EF的長度y最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aex+ +b(a>0).
(Ⅰ)求f(x)在[0,+∞)內(nèi)的最小值;
(Ⅱ)設(shè)曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y= ,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,F(xiàn)為雙曲線C:﹣=1的左焦點(diǎn),雙曲線C上的點(diǎn)Pi與P7﹣i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是( )
A. 9 B. 16 C. 18 D. 27
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若則一定有( )
A. B. C. D.
【答案】D
【解析】本題主要考查不等關(guān)系。已知,所以,所以,故。故選
【題型】單選題
【結(jié)束】
5
【題目】關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關(guān)于x的不等式bx2-ax-2>0的解集為( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,△ABC是邊長為2的正三角形,∠PCA=90°,E,H分別為AP,AC的中點(diǎn),AP=4,BE= .
(Ⅰ)求證:AC⊥平面BEH;
(Ⅱ)求直線PA與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}、等差數(shù)列{bn},滿足a1>0,b1=a1﹣1,b2=a2 , b3=a3且數(shù)列{an}唯一.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C、D是函數(shù)y=sin(ωx+φ)(ω>0,0<φ<)一個周期內(nèi)的圖象上的四個點(diǎn),如圖所示,A(﹣ , 0),B為y軸的點(diǎn),C為圖象上的最低點(diǎn),E為該函數(shù)圖象的一個對稱中心,B與D關(guān)于點(diǎn)E對稱,在x軸方向上的投影為 .
(1)求函數(shù)f(x)的解析式及單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移得到函數(shù)g(x)的圖象,已知g(α)= , α∈(﹣ , 0),求g(α+)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com