【題目】直角坐標(biāo)平面內(nèi),每個點(diǎn)繞原點(diǎn)按逆時針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為,每個點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?/span>倍的變換所對應(yīng)的矩陣為.

(I)求矩陣的逆矩陣;

(Ⅱ)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.

【答案】(Ⅰ);(Ⅱ).

【解析】

試題分析:(1)在直角坐標(biāo)平面內(nèi),將每個點(diǎn)繞原點(diǎn)按逆時針方向旋轉(zhuǎn)的變換所對應(yīng)的矩陣為.所以由旋轉(zhuǎn)變換得到的公式即可求得矩陣M.再根據(jù)逆矩陣求出結(jié)論.

2)將每個點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?/span>倍的變換所對應(yīng)的矩陣為,由于曲線先在變換作用下,然后在變換作用下得到的曲線方程.所以.所以在曲線上任取一點(diǎn),通過NM的變換即可得到結(jié)論.

1 ,4

2 ,

代入中得:

故所求的曲線方程為:7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是全稱量詞命題還是存在量詞命題.

1)梯形的對角線相等;

2)存在一個四邊形有外接圓

3)二次函數(shù)的圖象都與x軸相交;

4)存在一對實(shí)數(shù)x,y,使成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)滿足 ,則( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017527日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤棄子認(rèn)輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(2)為了進(jìn)一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊(duì)參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機(jī)抽取2人出賽,求2人恰好一男一女的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,MPB的中點(diǎn).

(1)求證:AM||平面PCD;

(2)求證:平面ACM⊥平面PAB;

(3)若PC與平面ACM所成角為30°,PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)小張三次射擊恰有兩次命中十環(huán)的概率,先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定2,46,8表示命中十環(huán),0,13,5,7,9表示未命中十環(huán),再以每三個隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

321 421 292 925 274 632 800 478 598 663 531 297 396

021 506 318 230 113 507 965

據(jù)此估計(jì),小張三次射擊恰有兩次命中十環(huán)的概率為()

A. 0.25B. 0.30C. 0.35D. 0.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。

(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修45:不等式選講

設(shè)函數(shù)

)解不等式;

)若對一切實(shí)數(shù)均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案