【題目】已知函數(shù).

(1),求函數(shù)的單調(diào)區(qū)間;

(2)的極小值點,求實數(shù)a的取值范圍。

【答案】(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為 (2)

【解析】

(1)將參數(shù)值代入得到函數(shù)的表達(dá)式,將原函數(shù)求導(dǎo)得到導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間;(2)因為的極小值點,所以得到;分情況討論,每種情況下是否滿足x=1是函數(shù)的極值,進(jìn)而得到結(jié)果.

(1)由題

,得

,得;由,得

的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為

(2),

因為的極小值點,所以 ,即,

所以

當(dāng)時,上單調(diào)遞減;

上單調(diào)遞增;

所以的極小值點,符合題意;

當(dāng)時,

上單調(diào)遞增;

上單調(diào)遞減;上單調(diào)遞增;

所以的極小值點,符合題意;

當(dāng)時, 上單調(diào)遞增,

無極值點,不合題意

當(dāng)時,

上單調(diào)遞增;

上單調(diào)遞減;

上單調(diào)遞增;

所以的極大值點,不符合題意;

綜上知,所求的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAC,PAAB,PAAB,,點D,E分別在棱PBPC上,且DEBC,

1)求證:BC⊥平面PAC;

2)當(dāng)DPB的中點時,求AD與平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足

(1)若,求證:存在a,b,c為常數(shù)),使數(shù)列是等比數(shù)列,并求出數(shù)列{an}的通項公式;

(2)若an 是一個等差數(shù)列{bn}的前n項和,求首項a1的值與數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的個數(shù)為(

①兩個有共同始點且相等的向量,其終點可能不同;

②若非零向量共線,則、、、四點共線;

③若非零向量共線,則;

④四邊形是平行四邊形,則必有;

,則、方向相同或相反.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱的側(cè)面是菱形,.

(1) 求證:;

(2)若,,求的值,使得 二面角的余弦值的為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某親子游戲結(jié)束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數(shù)字,小球除數(shù)字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.抽獎活動的獎勵規(guī)則是:若取出的兩個小球上數(shù)字之積大于4,則獎勵飛機(jī)玩具一個;若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;若取出的兩個小球上數(shù)字之積小于1,則獎勵飲料一瓶.

1)求每對親子獲得飛機(jī)玩具的概率;

2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ),

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵,

∴當(dāng)時, ,當(dāng)時,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當(dāng)時, ,∴上單調(diào)遞增.

又∵,∴當(dāng)時, ;當(dāng)時, .

①當(dāng)時, ,即,這時, ;

②當(dāng)時, ,即,這時, .

綜上, 上的最大值為:當(dāng)時, ;

當(dāng)時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.

查看答案和解析>>

同步練習(xí)冊答案