【題目】已知定義在R上的函數(shù)是奇函數(shù),函數(shù)的定義域?yàn)?/span>

1的值;

2上遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;

32的條件下,若函數(shù)在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1;2;3.

【解析】

試題分析:1因?yàn)楹瘮?shù)是R上的奇函數(shù),所以,求得2根據(jù)定義法,設(shè) 時(shí),需滿足,這樣可求得實(shí)數(shù)的取值范圍;3將函數(shù)零點(diǎn)轉(zhuǎn)化為的實(shí)根,是方程的一個(gè)實(shí)根,所以需討論的實(shí)根情況,得到的取值范圍.

試題解析:1 函數(shù)是奇函數(shù)

………………3分

2上遞減

任給實(shí)數(shù) ,當(dāng) 時(shí)

………………………………………………6分

31,令,即

化簡(jiǎn)得

是方程的根,則,

此時(shí)方程的另一根為1,與在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn)不符.

函數(shù)在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn)等價(jià)于方程

在區(qū)間上有且僅有一個(gè)非零的實(shí)根.

當(dāng)時(shí),得

,則方程的根為,符合題意;

,則與2條件下矛盾,不符合題意.

當(dāng)時(shí),令

綜上所述,所求實(shí)數(shù)的取值范圍是 ………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等腰直角三角形,其中, 點(diǎn)分別是、

的中點(diǎn),現(xiàn)將沿著邊折起到位置, 使,連結(jié)、

求證:BCPB

求PC與平面ABCD所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α、β是兩個(gè)平面,直線lα,lβ,若以lα;lβ;αβ中兩個(gè)為條件,另一個(gè)為結(jié)論構(gòu)成三個(gè)命題,則其中正確的命題有 (   )

A. ①③;①②

B. ①③;②③

C. ①②②③

D. ①③;①②②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),.

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒里裝有大小均勻的個(gè)小球,其中有紅色球個(gè),編號(hào)分別為白色球個(gè), 編號(hào)分別為, 從盒子中任取個(gè)小球假設(shè)取到任何—個(gè)小球的可能性相).

1求取出的個(gè)小球中,含有編號(hào)的小球的概率;

2在取出的個(gè)小球中, 小球編號(hào)大值設(shè)為機(jī)變的分布列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓短軸的一個(gè)端點(diǎn)與其兩個(gè)焦點(diǎn)構(gòu)成面積為3的直角三角形.

1)求橢圓的方程;

2)過圓上任意一點(diǎn)作圓的切線與橢圓交于兩點(diǎn),以為直徑的圓是否過定點(diǎn),如過,求出該定點(diǎn);不過說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張?jiān)谔詫毦W(wǎng)上開一家商店,他以10元每條的價(jià)格購進(jìn)某品牌積壓圍巾2000條定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價(jià)格銷售,平均每日銷售量為10條;B商店以25元每條的價(jià)格銷售,平均每日銷售量為20條。假定這種圍巾的銷售量t是售價(jià)x)(的一次函數(shù),且各個(gè)商店間的售價(jià)、銷售量等方面不會(huì)互相影響

1試寫出圍巾銷售每日的毛利潤(rùn)y關(guān)于售價(jià)x)(的函數(shù)關(guān)系式不必寫出定義域,并幫助小張定價(jià),使得每日的毛利潤(rùn)最高每日的毛利潤(rùn)為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià);

2考慮到這批圍巾的管理、倉儲(chǔ)等費(fèi)用為200元只要圍巾沒有售完,均須支付200元天,管理、倉儲(chǔ)等費(fèi)用與圍巾數(shù)量無關(guān),試問小張應(yīng)該如何定價(jià),使這批圍巾的總利潤(rùn)最高總利潤(rùn)總毛利潤(rùn)總管理、倉儲(chǔ)等費(fèi)用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;

(2)當(dāng)AE為何值時(shí),綠地面積y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)在高考前各做了5次立定跳遠(yuǎn)測(cè)試,測(cè)得甲的成績(jī)?nèi)缦?/span>(單位:米)2.202.30,2.30,2.40,2.30,若甲、乙兩人的平均成績(jī)相同,乙的成績(jī)的方差是0.005,那么甲、乙兩人成績(jī)較穩(wěn)定的是________

查看答案和解析>>

同步練習(xí)冊(cè)答案