【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中點.
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
【答案】證明:(Ⅰ)由題意知BC⊥CC1 , BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1 , 又DC1平面ACC1A1 ,
∴DC1⊥BC.
由題設知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,
∴DC1⊥平面BDC,又DC1平面BDC1 ,
∴平面BDC1⊥平面BDC;
(Ⅱ)設棱錐B﹣DACC1的體積為V1 , AC=1,由題意得V1= × ×1×1= ,
又三棱柱ABC﹣A1B1C1的體積V=1,
∴(V﹣V1):V1=1:1,
∴平面BDC1分此棱柱兩部分體積的比為1:1.
【解析】(Ⅰ)由題意易證DC1⊥平面BDC,再由面面垂直的判定定理即可證得平面BDC1⊥平面BDC;(Ⅱ)設棱錐B﹣DACC1的體積為V1 , AC=1,易求V1= × ×1×1= ,三棱柱ABC﹣A1B1C1的體積V=1,于是可得(V﹣V1):V1=1:1,從而可得答案.
【考點精析】本題主要考查了棱柱的結構特征和平面與平面垂直的判定的相關知識點,需要掌握兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形;一個平面過另一個平面的垂線,則這兩個平面垂直才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2﹣(a+1)x+1.
(1)若不等式f(x)<mx的解集為{x|1<x<2},求實數a、m的值;
(2)解不等式f(x)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃在今年內同時出售變頻空調機和智能洗衣機,由于這兩種產品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據實際情況(如資金、勞動力)確定產品的月供應量,以使得總利潤達到最大.已知對這兩種產品有直接限制的因素是資金和勞動力,通過調查,得到關于這兩種產品的有關數據如表:
試問:怎樣確定兩種貨物的月供應量,才能使總利潤達到最大,最大利潤是多少?
資金 | 單位產品所需資金(百元) | ||
空調機 | 洗衣機 | 月資金供應量(百元) | |
成本 | 30 | 20 | 300 |
勞動力(工資) | 5 | 10 | 110 |
單位利潤 | 6 | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,則該球的表面積是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于給定的正整數k,若數列{an}滿足
=2kan對任意正整數n(n> k) 總成立,則稱數列{an} 是“P(k)數列”.
(1)證明:等差數列{an}是“P(3)數列”;
若數列{an}既是“P(2)數列”,又是“P(3)數列”,證明:{an}是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =( ,cos ), =(cos ,1),且f(x)= .
(1)求函數f(x)的最小正周期;
(2)求函數f(x)在區(qū)間[﹣π,π]上的最大值和最小值及取得最值時x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲地到乙地要經過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數,求隨機變量的分布列和數學期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com