分析 (Ⅰ)將直線方程代入橢圓方程,由△>0及a≠0,即可求得實數(shù)a的取值范圍;
(Ⅱ)由以AB為直徑的圓過F,則$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,即可求得a的值.
解答 解:(Ⅰ)將直線方程代入雙曲線方程,$\left\{\begin{array}{l}{y=ax+1}\\{{y}^{2}=4x}\end{array}\right.$,
整理得:a2x2-(4-2a)+1=0.
由題意可知,△>0,即(4-2a)2-4×a2>0,解得:a<1,
由當(dāng)a=0時直線與拋物線只有一個交點,故不成立,
實數(shù)a的取值范圍(-∞,0)∪(0,1);
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),由(Ⅰ)可知:x1+x2=$\frac{4-2a}{{a}^{2}}$,x1•x2=$\frac{1}{{a}^{2}}$,
由于以AB為直徑的圓過原點,故∠AFB=90°,于是:
∴$\overrightarrow{FA}$•$\overrightarrow{FB}$=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+(ax1+1)(ax2+1),
=(a2+1)x1•x2+(a-1)(x1+x2)+2,
=(a2+1)$\frac{1}{{a}^{2}}$+(a-1)$\frac{4-2a}{{a}^{2}}$+2=0,
解得:a=-3±2$\sqrt{3}$,
由a∈(-∞,0)∪(0,1)
所以實數(shù)a的值為-3-2$\sqrt{3}$或-3+2$\sqrt{3}$.…(12分)
點評 本題考查直線與拋物線的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運算,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充分必要條件 | D. | 非充分非必須條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{{\sqrt{2}}}{8}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10m+n | B. | 10m-n | C. | 10mn | D. | 10${\;}^{\frac{m}{n}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “m=$\frac{1}{2}$”是“直線(m+2)x+3my+1=0與直線(m-2)x+(m+2)y-3=0相互平行”的充分不必要條件 | |
B. | “直線l垂直平面α內(nèi)無數(shù)條直線”是“直線l垂直于平面α”的充分條件 | |
C. | 已知$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$為非零向量,則“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow$=$\overrightarrow{c}$”的充要條件 | |
D. | p:存在x∈R,x2+2x+2 016≤0.則¬p:任意x∈R,x2+2x+2016>0. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com