【題目】已知是拋物線的焦點(diǎn), 為拋物線上不同的兩點(diǎn), 分別是拋物線在點(diǎn)、點(diǎn)處的切線, 是的交點(diǎn).
(1)當(dāng)直線經(jīng)過焦點(diǎn)時(shí),求證:點(diǎn)在定直線上;
(2)若,求的值.
【答案】(Ⅰ)見解析;(Ⅱ) .
【解析】試題分析: (1)利用導(dǎo)數(shù)的幾何意義,分別求出切線PA,PB的斜率,再寫出直線方程,求出交點(diǎn)P的坐標(biāo),聯(lián)立直線AB的方程和拋物線方程,求出 ,即P點(diǎn)縱坐標(biāo)為定值 ,得證; (2)假設(shè)直線AB的方程 ,聯(lián)立直線和拋物線方程,求出,由兩點(diǎn)間的距離公式,得到 ,化簡 ,得出值.
試題解析:(Ⅰ)拋物線,則,
∴切線的方程為,即,同理切線的方程為,
聯(lián)立得點(diǎn) , 設(shè)直線的方程為,代入得。所以所以點(diǎn)在直線上
(Ⅱ) 設(shè)直線的方程為,代入得。
,所以,
點(diǎn)睛:本題主要考查直線與拋物線位置關(guān)系, 屬于中檔題. 本題思路): (1)由導(dǎo)數(shù)求出切線PA,PB方程, 得出交點(diǎn)P坐標(biāo), 聯(lián)立直線AB的方程和拋物線方程, 由韋達(dá)定理得出 為定值,即點(diǎn)P縱坐標(biāo)為定值; (2) 假設(shè)直線AB的方程 ,聯(lián)立直線和拋物線方程,由 ,求出 之間的關(guān)系,化簡 ,將 之間的關(guān)系代入,求出值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,M、N分別是A1B1、B1C1的中點(diǎn),問:
(1)AM和CN是否是異面直線?說明理由;
(2)D1B和CC1是否是異面直線?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序的功能是( )
A. 求1×2×3×4×…×10 00的值
B. 求2×4×6×8×…×10 000的值
C. 求3×5×7×9×…×10 001的值
D. 求滿足1×3×5×…×n>10 000的最小正整數(shù)n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10∶1.
(1)求展開式中各項(xiàng)系數(shù)的和;
(2)求展開式中含的項(xiàng);
(3)求展開式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。
⑴記所抽取的3道題中,甲答對的題數(shù)為X,則X的分布列為____________;
⑵記乙能答對的題數(shù)為Y,則Y的期望為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,底面ABCD中,AB⊥AD,AD=2,AB=3,BC=BE=7,△DCE是邊長為6的正三角形.
(1)求證:平面DEC⊥平面BDE;
(2)求點(diǎn)A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人同時(shí)從地趕住地,甲先騎自行車到兩地的中點(diǎn)再改為跑步;乙先跑步到兩地的中點(diǎn)再改為騎自行車,最后兩人同時(shí)到達(dá)地.已知甲騎自行車比乙騎自行車的速度快,且兩人騎車的速度均大于跑步的速度.現(xiàn)將兩人離開地的距離與所用時(shí)間的函數(shù)關(guān)系用圖象表示如下:
則上述四個(gè)函數(shù)圖象中,甲、乙兩人運(yùn)行的函數(shù)關(guān)系的圖象應(yīng)該分別是( )
A. 圖①、圖② B. 圖①、圖④ C. 圖③、圖② D. 圖③、圖④
查看答案和解析>>