【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿(mǎn)足| |=| |=| |,| || |=| || |=| || |=﹣4,動(dòng)點(diǎn)P,M滿(mǎn)足| |=2, = ,則| |的最大值是

【答案】3 +1
【解析】解:∵| |=| |=| |,∴A,B,C在以D為圓心的圓D上,
= = =﹣4,∴ 兩兩夾角相等均為120°,∴|DA|=2
以D為原點(diǎn)建立平面直角坐標(biāo)系,設(shè)A(2 ,0),則B(﹣ ,﹣ ),C(﹣ , ),
=(0,2 ).
∵| |=2,∴P在以A為圓心,以2為半徑的圓A上,
= ,∴M為PC的中點(diǎn),∴ = ).
設(shè)P(2 +2cosα,2sinα),則 =(3 +2cosα,2sinα+ ),
= )=(cosα+ ,sinα+ ),
=(cosα+ 2+(sinα+ 2=3 cosα+3 sinα+19=6 sin(α+ )+19,
∴| |的最大值為 = =3 +1.
所以答案是:3 +1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=1+λan , 其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若S5= ,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,⊥平面,底面為正方形,的中點(diǎn),.

(1)求證:;

(2)邊上是否存在一點(diǎn),使得//平面?若存在,求的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= ,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16 (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為1.80元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸3.00元,某月甲、乙兩戶(hù)共交水費(fèi)y元,已知甲、乙兩戶(hù)該月用水量分別為5x噸、3x噸.

(1)y關(guān)于x的函數(shù);

(2)若甲、乙兩戶(hù)該月共交水費(fèi)26.4元,分別求出甲、乙兩戶(hù)該月的用水量和水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校按分層抽樣的方法從高中三個(gè)年級(jí)抽取部分學(xué)生調(diào)查,從三個(gè)年級(jí)抽取人數(shù)的比例為如圖所示的扇形面積比,已知高二年級(jí)共有學(xué)生1 200,并從中抽取了40.

(1)該校的總?cè)藬?shù)為多少?(2)三個(gè)年級(jí)分別抽取多少人?

(3)在各層抽樣中可采取哪種抽樣方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x﹣1)=f(x+1).且當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x2+1,如果函數(shù)g(x)=f(x)﹣a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案