已知三棱柱ABC­A1B1C1的側(cè)棱與底面垂直,體積為,底面是邊長為的正三角形.若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為(  ).
A.  B.C.  D.
B
如圖所示:SABC×××sin 60°=.

∴VABC­A1B1C1=SABC×OP=×OP=,∴OP=.
又OA=××=1,
∴tan∠OAP=,由∠OAP∈,
得∠OAP=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC是邊長為l的等邊三角形,D、E分別是AB、AC邊上的點(diǎn),AD = AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到三棱錐A-BCF,其中
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當(dāng)時(shí),求三棱錐F-DEG的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三棱錐D-ABC的三個(gè)側(cè)面與底面全等,且AB=AC=
3
,BC=2,則以BC為棱,以面BCD與面BCA為面的二面角的余弦值為( 。
A.
3
3
B.
1
3
C.0D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱柱ABC-A1B1C1中,AB=2,AA1=1,點(diǎn)P在平面BCC1B1內(nèi),PB1=PC1=
2

(1)求證:PA1⊥BC;
(2)求二面角C1-PA1-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在幾何體ABCDE中,AB=AD=BC=DC=2,AE=2
2
,AB⊥AD,且AE⊥平面ABD,平面CBD⊥平面ABD.
(Ⅰ)求證:AB平面CDE;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,異面直線A1B與AC所成的角是______°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)所在平面外一點(diǎn),若,則在平面內(nèi)的射影是的(   )
A.內(nèi)心B.外心 C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二面角,,A為垂足,,,則異面直線所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖(a),在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)四面體,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,如圖(b)所示,那么,在四面體A-EFH中必有(  )

A.AH⊥△EFH所在平面
B.AG⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面

查看答案和解析>>

同步練習(xí)冊答案