A. | (2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈Z | B. | (2kπ-$\frac{2}{3}$π,2kπ+$\frac{4}{3}$π),k∈Z | ||
C. | (4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈Z | D. | (4kπ-$\frac{2}{3}$π,4kπ+$\frac{4}{3}$π),k∈Z |
分析 由題意可得${(2\sqrt{3})}^{2}$+${(\frac{T}{2})}^{2}$=42,求得ω的值,再根據(jù)對稱中心求得φ的值,可得函數(shù)f(x)的解析式,利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)遞增區(qū)間.
解答 解:函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),
A($\frac{1}{3}$,0)為f(x)圖象的對稱中心,B,C是該圖象上相鄰的最高點和最低點,若BC=4,
∴${(2\sqrt{3})}^{2}$+${(\frac{T}{2})}^{2}$=42,即12+$\frac{{π}^{2}}{{ω}^{2}}$=16,求得ω=$\frac{π}{2}$.
再根據(jù)$\frac{π}{2}$•$\frac{1}{3}$+φ=kπ,k∈Z,可得φ=-$\frac{π}{6}$,∴f(x)=$\sqrt{3}$sin($\frac{π}{2}$x-$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤$\frac{π}{2}$x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得4kπ-$\frac{2}{3}$π≤x≤4kπ+$\frac{4}{3}$π,
故f(x)的單調(diào)遞增區(qū)間為(4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈Z,
故選:C.
點評 本題主要考查正弦函數(shù)的周期性、最值以及單調(diào)性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ac(a-c)>0 | B. | c(b-a)<0 | C. | cb2<ab2 | D. | ab>ac |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
頻數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
頻數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com