觀察下列各式9-1=8,16-4=12,25-9=16,36-16=20…,這些等式反映了自然數(shù)間的某種規(guī)律,設(shè)n表示自然數(shù),用關(guān)于n的等式表示為   
【答案】分析:根據(jù)已知中各式9-1=8,16-4=12,25-9=16,36-16=20…,分析等式兩邊的數(shù)的變化規(guī)律,發(fā)現(xiàn)等號前為一個平方差的形式,右邊是4的整數(shù)倍,歸納總結(jié)后,即可得到結(jié)論.
解答:解:觀察下列各式
9-1=32-12=8=4×(1+1),
16-4=42-22=12=4×(1+2),
25-9=52-32=16=4×(1+3),
36-16=62-42=20=4×(1+4),
,…,
分析等式兩邊數(shù)的變化規(guī)律,我們可以推斷
(n+2)2-n2=4(n+1)(n∈N?
故答案為:(n+2)2-n2=4(n+1)(n∈N?
點(diǎn)評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般結(jié)論是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可得猜想:
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
;請對上面的猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式9-1=8,16-4=12,25-9=16,36-16=20…,這些等式反映了自然數(shù)間的某種規(guī)律,設(shè)n表示自然數(shù),用關(guān)于n的等式表示為
(n+2)2-n2=4(n+1)(n∈N?
(n+2)2-n2=4(n+1)(n∈N?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市啟東中學(xué)高三考前輔導(dǎo)材料之小題強(qiáng)化篇1(解析版) 題型:解答題

觀察下列各式9-1=8,16-4=12,25-9=16,36-16=20…,這些等式反映了自然數(shù)間的某種規(guī)律,設(shè)n表示自然數(shù),用關(guān)于n的等式表示為   

查看答案和解析>>

同步練習(xí)冊答案