在平面幾何里,有勾股定理:“設△ABC的兩邊AB、AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關系,可以得出的結(jié)論是:設三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB兩兩互相垂直,則________

答案:
解析:

  解析:將△ABC類比到三棱錐A-BCD,直角邊和斜邊分別類比到三個側(cè)面和底面,當三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB兩兩互相垂

直時,則

  點評:以上將平面幾何中的勾股定理類比到三維空間,并且同樣可將證明方法類比.在證勾股定理時,過A作AO⊥BC于O,則易證AB2=BO·BC,AC2=CO·BC,相加即得.當三棱錐A-BCD三個側(cè)面兩兩互相垂直時,過A作AO⊥平面BCD于O,則易證,,三式相加即可得以上結(jié)論.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

15、在平面幾何里,有勾股定理“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關系,可以得出正確的結(jié)論是:“設三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB兩兩互相垂直,則
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3、在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則|AB|2+|AC|2=|BC|2”拓展到空間,類比平面幾何的勾股定理,“設三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB 兩兩相互垂直,則可得”( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東汕頭市高二10月月考數(shù)學試卷(解析版) 題型:填空題

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關系?梢缘贸龅恼_結(jié)論是:“設三棱錐A—BCD的三個側(cè)面ABC、ACD、ADB兩兩相互垂直,則                                        ”.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省佛山市高二下學期期中考試文科數(shù)學試卷(解析版) 題型:填空題

在平面幾何里,有勾股定理:“設的兩邊AB、AC互相垂直,則!蓖卣沟娇臻g,類比平面幾何的勾股定理,研究三棱錐的側(cè)面積與底面積間的關系,可以得到的正確結(jié)論是:“設三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB兩兩互相垂直,則                     

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山東省濟寧市高二下學期期中文科數(shù)學試卷(解析版) 題型:選擇題

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”拓展到空間,類比平面幾何的勾股定理,“設三棱錐ABCD的三個側(cè)面ABC、ACD、ADB兩兩相互垂直,則可得”猜想正確的是(    )

A.AB2+AC2+ AD2=BC2 +CD2 +BD2              B.

C.          D.AB2×AC2×AD2=BC2 ×CD2 ×BD2

 

查看答案和解析>>

同步練習冊答案