【題目】已知向量,,,向量與垂直,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
【答案】(1);(2).
【解析】試題分析:(1)向量與垂直,得是以為首項(xiàng),為公比的等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式可求;(2)由,則,利用錯(cuò)位相減法可求其和.
試題解析:(1)∵向量與垂直,∴ ,即∴,∴
∴是以1為首項(xiàng),2為公比的等比數(shù)列,∴.
(2)∵,∴
∴,∴,①
∴,②
∴由①②得,
∴.
【 方法點(diǎn)睛】本題主要考查等比數(shù)列通項(xiàng)、平面向量數(shù)量積公式以及錯(cuò)位相減法求數(shù)列的通項(xiàng),屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆河北省正定中學(xué)高三上學(xué)期第三次月考(期中)數(shù)學(xué)(理)】在平面直角坐標(biāo)系中,當(dāng)不是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為;當(dāng)是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為它自身,平面曲線上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線定義為曲線的“伴隨曲線”,現(xiàn)有下列命題:
①若點(diǎn)的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn);
②若曲線關(guān)于軸對(duì)稱,則其“伴隨曲線” 關(guān)于軸對(duì)稱;
③單位圓的“伴隨曲線”是它自身;
④一條直線的“伴隨曲線”是一條直線.
其中真命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的普通方程和曲線的一個(gè)參數(shù)方程;
(2)曲線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府決定建造一批保障房供給社會(huì),緩解貧困人口的住房問題,計(jì)劃用1 600萬元購得一塊土地,在該土地上建造10幢樓房的住宅小區(qū),每幢樓的樓層數(shù)相同,且每層建筑面積均為1 000平方米,每平方米的建筑費(fèi)用與樓層有關(guān),第x層樓房每平方米的建筑費(fèi)用為(kx+800)元(其中k為常數(shù)).經(jīng)測(cè)算,若每幢樓為5層,則該小區(qū)每平方米的平均綜合費(fèi)用為1 270元.
注:每平方米平均綜合費(fèi)用=.
(1) 求k的值;
(2) 問要使該小區(qū)樓房每平方米的平均綜合費(fèi)用最低,應(yīng)將這10幢樓房建成多少層?此時(shí)每平方米的平均綜合費(fèi)用為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若恒成立,求的取值范圍;
(Ⅱ)設(shè),,(為自然對(duì)數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè),服藥后每毫升中的含藥量(微克)與時(shí)間(小時(shí))之間近似滿足如圖所示的曲線.(當(dāng)時(shí), ).
(1)寫出第一次服藥后與之間的函數(shù)關(guān)系式;
(2)據(jù)進(jìn)一步測(cè)定,每毫升血液中含藥量不少于微克時(shí),治療疾病有效,求服藥一次后治療疾病有效時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 的定義域是R,對(duì)于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí), 。
(1)求證: ,且當(dāng) 時(shí),有 ;
(2)判斷 在R上的單調(diào)性;
(3)設(shè)集合A=,B=,若A∩B=,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)頂點(diǎn)分別為,焦點(diǎn)在軸上,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)為軸上一點(diǎn),過作軸的垂線交橢圓于不同的兩點(diǎn),過作的垂線交于點(diǎn).求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某DVD光盤銷售部每天的房租、人員工資等固定成本為300元,每張DVD光盤的進(jìn)價(jià)是6元,銷售單價(jià)與日均銷售量的關(guān)系如表所示:
銷售單價(jià)(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均銷售量(張) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,寫出日均銷售量P(x)(張)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式,并寫出其定義域;
(2)問這個(gè)銷售部銷售的DVD光盤銷售單價(jià)定為多少時(shí)才能使日均銷售利潤最大?最大銷售利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com