1.在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為$\sqrt{2}$的正方形,AA1=3,E是AA1的中點(diǎn),過C1作C1F⊥平面BDE與平面ABB1A1交于點(diǎn)F,則$\frac{AF}{{A{A_{1}}}}$等于( 。
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

分析 連結(jié)AC、BD,交于點(diǎn)O,當(dāng)C1F與EO垂直時(shí),C1F⊥平面BDE,從而F∈AA1,△C1A1F∽△EAO,由此能求出$\frac{AF}{A{A}_{1}}$的值.

解答 解:連結(jié)AC、BD,交于點(diǎn)O,
∵四邊形ABCD是正方形,AA1⊥底面ABCD,
∴BD⊥平面ACC1A1,
則當(dāng)C1F與EO垂直時(shí),C1F⊥平面BDE,
∵F∈平面ABB1A1,∴F∈AA1
 在矩形ACC1A1中,△C1A1F∽△EAO,
則$\frac{{A}_{1}{C}_{1}}{{A}_{1}F}$=$\frac{AE}{AO}$,
∵A1C1=2AO=$\sqrt{2}AB=2$,AE=$\frac{3}{2}$,
∴A1F=$\frac{4}{3}$,∴AF=$\frac{5}{3}$,∴$\frac{AF}{A{A}_{1}}$=$\frac{5}{9}$.
故選:C.

點(diǎn)評(píng) 本題考查兩線段的比值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了解人們對(duì)于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡大點(diǎn)頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(I)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
(Ⅱ)若對(duì)年齡在[5,15)的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?參考數(shù)據(jù):P(K2≥3.841)=0.050,P(K2≥6.635)=0.010,P(K2≥10.828)=0.001  
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在鈍角△ABC中,c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)一組數(shù)據(jù)的方差是0.1,將這組數(shù)據(jù)的每個(gè)數(shù)據(jù)都乘以10,所得到的一組新數(shù)據(jù)的方差是( 。
A.10B.0.1C.0.001D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$θ∈(0,\frac{π}{2})$,若直線xcosθ+2y+1=0與直線x-ysin2θ-3=0垂直,則sinθ等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“若x>2,則x2-3x+2>0”的否命題是( 。
A.若x2-3x+2<0,則x≥2B.若x≤2,則x2-3x+2≤0
C.若x2-3x+2<0,則x≥2D.若x2-3x+2≤0,則x≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l:ax+y+b=0與圓O:x2+y2=4相交于A、B兩點(diǎn),M($\sqrt{3}$,-1),且$\overrightarrow{OA}+\overrightarrow{OB}$=$\frac{2}{3}\overrightarrow{OM}$,則$\sqrt{3}$ab=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函數(shù)f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)m,n∈(0,+∞),且m≠n,求證:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)設(shè)過P直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以MN為直徑的圓Q的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案