【題目】如圖,在四棱錐中,底面為正方形, 平面,已知為線段的中點(diǎn).
(I)求證: 平面;
(II)求平面與平面所成銳二面角的余弦角.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(I)連接 和 交于 ,連接 ,利用中位線定理得出 ,故而 平面 ;(II)求出 ,以 為原點(diǎn)建立坐標(biāo)系,求出兩平面的法向量,計(jì)算法向量的夾角即可得出二面角的余弦值.
試題解析:(I)連接和交于點(diǎn),連接,因?yàn)樗倪呅?/span>為正方形,所以為的中點(diǎn).
因?yàn)?/span>為的中點(diǎn),所以.
因?yàn)?/span>平面平面,
所以平面.
(II)因?yàn)?/span>平面平面,
所以.
因?yàn)?/span>為正方形,所以.
因?yàn)?/span>平面,
所以平面.
因?yàn)?/span>平面,所以.
所以以為原點(diǎn),以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,
則.
因?yàn)?/span>平面平面,
所以.
因?yàn)?/span>,所以.
因?yàn)樗倪呅?/span>為正方形,
所以,
所以.
由四邊形為正方形,
得,
所以.
設(shè)平面的一個(gè)法向量為,又知,
由
令,得,
所以.
設(shè)平面的一個(gè)法向量為,又知,
由
令,得,
所以.
設(shè)平面與平面所成的銳二面角為,
又,
則.
所以平面與平面所成的銳二面角的余弦值為.
【方法點(diǎn)晴】本題主要考查線面平行的判定定理以及利用空間向量求二面角的大小,屬于難題.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: 和拋物線: , 為坐標(biāo)原點(diǎn).
(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;
(2)過(guò)拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點(diǎn).
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過(guò)點(diǎn),直線交軸于,且, 為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是橢圓的上頂點(diǎn),過(guò)點(diǎn)分別作直線交橢圓于兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)單位有職工800人,期中具有高級(jí)職稱的160人,具有中級(jí)職稱的320人,具有初級(jí)職稱的200人,其余人員120人.為了解職工收入情況,決定采用分層抽樣的方法,從中抽取容量為40的樣本.則從上述各層中依次抽取的人數(shù)分別是( )
A.12,24,15,9
B.9,12,12,7
C.8,15,12,5
D.8,16,10,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)向量 =(a, ), =(cosC,c﹣2b),且 ⊥ .
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周長(zhǎng)l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形ABC的邊長(zhǎng)為2,D、E、F分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),∠EDF=90°,∠BDE=θ(0°<θ<90°).
(1)當(dāng)tan∠DEF= 時(shí),求θ的大小;
(2)求△DEF的面積S的最小值及使得S取最小值時(shí)θ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com