【題目】如圖,在三棱柱中,底面為正三角形,底面,,點在線段上,平面平面.

(1)請指出點的位置,并給出證明;

(2)若,求點到平面的距離.

【答案】(1)見解析(2)

【解析】

(1)中點為,的中點為,連接,,通過幾何關系得到四邊形為平行四邊形所以,再證,進而得到線面垂直,面面垂直;(2)由(1)可知,點到平面的距離為,由得到相應的點面距離.

(1)點為線段的中點.

證明如下:取中點為,的中點為,連接,,.

所以,,所以四邊形為平行四邊形.所以.

因為,,所以.

又因為平面,平面,所以.

,所以平面.

所以平面,而平面,所以平面平面.

(2)

,得.由(1)可知,點到平面的距離為.

的面積,,

等腰底邊上的高為.

記點到平面的距離為,由 ,得,即點到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出的是2017年11月-2018年11月某工廠工業(yè)原油產(chǎn)量的月度走勢圖,則以下說法正確的是( )

A. 2018年11月份原油產(chǎn)量約為51.8萬噸

B. 2018年11月份原油產(chǎn)量相對2017年11月增加1.0%

C. 2018年11月份原油產(chǎn)量比上月減少54.9萬噸

D. 2018年1-11月份原油的總產(chǎn)量不足15000萬噸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,菱形所在的平面,中點,上的點.

1)求證:平面平面;

2)若的中點,當時,是否存在點,使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:

AFGC;

BDGC成異面直線且夾角為60;

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓,離心率,且橢圓過點.

(1)求橢圓的方程;

(2)設橢圓左、右焦點分別為,過的直線與橢圓交于不同的兩點,則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于的方程組的系數(shù)矩陣記為,且該方程組存在非零解,若存在三階矩陣,使得,(0表示零矩陣,即所有元素均為0的矩陣;矩陣對應的行列式為),則

1一定為1;

2一定為0;

3)該方程組一定有無窮多解.

其中正確說法的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,O是正方形的中心,EF分別為棱AB、的中點,則(

A.直線EF共面B.

C.平面平面D.OF所成角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過焦點F的直線l與拋物線交于ST,且.

1)求拋物線C的方程;

2)設點Px軸下方(不含x軸)一點,拋物線C上存在不同的兩點AB滿足,其中為常數(shù),且兩點D,E均在C上,弦AB的中點為M.

①若點P坐標為,拋物線過點A,B的切線的交點為N,證明:點N在直線MP上;

②若直線PM交拋物線于點Q,求證;為定值(定值用表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點與拋物線的焦點重合,且橢圓的離心率為

(1)求橢圓的標準方程;

(2)過橢圓右焦點的直線與橢圓交于兩點,在軸上是否存在點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案